
SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Supplementary Material of The Manuscript
“Using Statistical Measures and Machine
Learning for Graph Reduction to Solve

Maximum Weight Clique Problems”
Yuan Sun, Xiaodong Li, and Andreas Ernst

F

THIS document provides additional experiments to sup-
port our findings in the main paper. In particular, we

investigate whether the performance of our ranking-based
measure and correlation-based measure can be improved
by tuning the parameters in Section A. In Section B, we
investigate whether the performance of our MLPR model
(Machine Learning for Problem Reduction) can be improved
by enlarging the training datasets. Finally we investigate
whether our MLPR model trained on small and medium
sized synthetic graphs can be generalized to very large real-
world graphs in Section C.

A PARAMETER TUNING

In Section 5.2 of the main paper, we have presented exper-
imental results showing that 1) our ranking-based measure
fr (with εr = 0.01) can not significantly reduce problem size
for medium-sized graphs M te; and 2) our correlation-based
measure fc (with εc = 0) is not very effective in reducing the
size for large graphs Lte. Here we investigate whether the
performance of our ranking-based measure and correlation-
based measure can be improved by tuning the parameters.

A.1 Parameter Tuning for Ranking-based Measure

We test two parameter values (εr = 0.01 and εr = 0.03)
to investigate whether the performance of our ranking-
based measure fr can be improved when used to solve
the medium-sized graphs (M te) from DIMACS. We apply
our ranking-based measure with each parameter setting to
reduce problem size for these graphs as a pre-precessing
step, and use the TSM algorithm to solve the reduced
problem. The best objective value generated by TSM within
the cutoff time (1000 seconds) is regarded as an indication

• Y. Sun and X. Li are with School of Science, RMIT University, Melbourne,
3001, Victoria, Australia.
E-mail: yuan.sun@rmit.edu.au; xiaodong.li@rmit.edu.au

• A. Ernst is with School of Mathematical Sciences, Monash University,
Clayton, 3800, Victoria, Australia.
E-mail: andreas.ernst@monash.edu

Manuscript received May 3, 2019; revised September 30, 2019.

TABLE S1: The results of TSM-fr with different εr values
(0.01 or 0.03) when used to solve the 9 hard medium-
sized graphs from DIMACS. ȳ and σy denote the mean and
standard deviation of best objective values generated in 25
independent runs within the cutoff time (1000 seconds); and
p̄ denotes the mean ratio of selected vertices. The statistically
best ȳ is in bold. The last row r̄ is the average ranking of
each algorithm across all datasets.

G TSM-fr (εr = 0.01) TSM-fr (εr = 0.03)
ȳ σy p̄ ȳ σy p̄

Mte
1 10069 144 0.93 9974 106 0.66

Mte
2 7479 277 1.00 7439 229 1.00

Mte
3 2431 31 0.98 2455 16 0.50

Mte
4 7805 231 1.00 7756 242 1.00

Mte
5 2445 53 0.79 2574 38 0.24

Mte
6 34265 0 1.00 34265 1 1.00

Mte
7 109870 77 1.00 109840 80 1.00

Mte
8 4678 92 1.00 4621 102 1.00

Mte
9 5306 168 1.00 5299 146 0.95

r̄ 1.22 1.11

of the effectiveness of problem reduction. The mean and
standard deviation of the best objective values obtained in
25 independent runs are presented in Table S1.

We observe that when using a larger parameter value
εr = 0.03, our ranking-based measure fr is able to remove
more vertices from 4 graphs, i.e., M te

1 , M te
3 , M te

5 and M te
9 .

However, the TSM-fr (εr = 0.03) algorithm only improves
over TSM-fr (εr = 0.01) on 2 of the 4 graphs. For the other 5
graphs, our ranking-based measure fr with εr = 0.03 is still
unable to remove any vertex, partially because these graphs
are very dense as shown in Table 1 of the main paper. Note
that we can further increase the value of εr to potentially
reduce the size of these dense graphs, but this will result in
removing too many vertices from other graphs (e.g., M te

5 ).
In Section 5.2 of the main paper, we have shown that our

ranking-based measure fr with εr = 0.01 works well for
large sparse graphs Lte. Thus we suggest a general guidance
on the parameter setting for our ranking-based measure fr
here: 1) εr = 0.01 for large sparse graphs; and 2) εr = 0.03
for medium-sized graphs.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

TABLE S2: The results of TSM-fc with different εc values
(0 or 0.01) when used to solve the 11 hard large-sized real-
world graphs. ȳ and σy denote the mean and standard de-
viation of best objective values generated in 25 independent
runs within the cutoff time (1000 seconds); and p̄ denotes
the mean ratio of selected vertices. The statistically best ȳ
is in bold. The last row r̄ is the average ranking of each
algorithm across all datasets.

G TSM-fc (εc = 0.00) TSM-fc (εc = 0.01)
ȳ σy p̄ ȳ σy p̄

Lte
1 32000 36 0.38 32060 40 0.15

Lte
2 26844 398 0.39 26855 305 0.15

Lte
3 31748 318 0.39 31629 358 0.16

Lte
4 29548 0 0.39 29487 292 0.15

Lte
5 32731 303 0.40 32835 0 0.17

Lte
6 32572 612 0.39 32807 524 0.13

Lte
7 30734 533 0.38 30827 161 0.14

Lte
8 46699 2017 0.37 50025 166 0.13

Lte
9 32969 44 0.37 33085 0 0.13

Lte
10 27775 0 0.40 27774 6 0.16

Lte
11 26190 0 0.40 26271 76 0.17

r̄ 1.36 1.00

A.2 Parameter Tuning for Correlation-based Measure

In this subsection, we investigate whether the performance
of our correlation-based measure fc can be improved by
tuning the parameter εc on the very large real-world graphs
Lte. We test two parameter values εc = 0 and εc = 0.01, and
apply our correlation-based measure to reduce the size of
each large graph. We then use the TSM algorithm to search
for a maximum weight clique in the reduced graph with
the cutoff time set to 1000 seconds. We repeat this process
for 25 times to alleviate randomness, and the mean and
standard deviation of the best objective values generated
in 25 independent runs are presented in Table S2.

We observe that by using a slightly larger parameter
value εc = 0.01, our correlation-based measure fc can
remove more vertices from these large sparse graphs. Sig-
nificantly, the TSM-fc algorithm with εc = 0.01 consistently
generates statistically better or equal solution quality than
that with εc = 0. It suggests that the performance of our
correlation-based measure fc can be improved by using a slightly
larger parameter value εc for large sparse graphs.

Thus as a general guidance on the parameter setting
for our correlation-based measure fc, we recommend to set
εc = 0.01 for large sparse graphs; and εc = 0 for medium-
sized dense graphs given its good performance shown in
Section 5.2 of the main paper.

B EFFECTS OF THE SIZE OF TRAINING SET

In Section 5.2 of the main paper, we have trained our MLPR
model on 8 easy medium-sized graphs (M tr) and used the
trained model to reduce problem size for 9 hard medium-
sized graphs (M te) from the DIMACS benchmark. Here we
investigate whether the performance of our MLPR model
can be improved by enlarging the training datasets.

We increase the size of training set by including 18 more
graphs from DIMACS, which are listed in Table S3. These
graphs are small (|V | < 1000) and can be easily solved to
optimality by using the TSM algorithm. As each vertex in

TABLE S3: The 18 small and easy graphs from DIMACS
which are used as additional training instances in our ex-
periments. |V | is the number of vertices; |E| is the number
of edges; and d is the graph density.

Name |V | |E| d

brock200 2 200 9876 0.4963
brock200 4 200 13089 0.6577
brock400 2 400 59786 0.7492
brock400 4 400 59765 0.7489
p hat300-1 300 10933 0.2438
p hat300-2 300 21928 0.4889
p hat300-3 300 33390 0.7445
p hat700-1 700 60999 0.2493
p hat700-2 700 121728 0.4976
p hat700-3 700 183010 0.7480
gen200 p0.9 44 200 17910 0.9000
gen200 p0.9 55 200 17910 0.9000
gen400 p0.9 75 400 71820 0.9000
C125.9 125 6963 0.8985
C250.9 250 27984 0.8991
DSJC500.5 500 125248 0.5020
MANN a27 378 70551 0.9901
keller4 171 9435 0.6491

TABLE S4: The results of TSM, TSM-MLPR8 and TSM-
MLPR26 when used to solve the 9 hard medium-sized
graphs from DIMACS. ȳ and σy denote the mean and
standard deviation of best objective values generated in 25
independent runs within the cutoff time (1000 seconds); and
p̄ denotes the mean ratio of selected vertices. The statistically
best ȳ is in bold. The last row r̄ is the average ranking of
each method across all datasets.

G TSM TSM-MLPR8 TSM-MLPR26
ȳ σy ȳ σy p̄ ȳ σy p̄

Mte
1 10119 0 10294 51 0.27 10276 27 0.24

Mte
2 7341 0 8250 142 0.55 8100 201 0.57

Mte
3 2407 0 2466 0 0.48 2466 1 0.43

Mte
4 8228 0 8898 161 0.52 8879 192 0.51

Mte
5 2402 0 2601 42 0.49 2656 39 0.42

Mte
6 34259 0 34253 6 0.98 34202 22 0.96

Mte
7 109190 4 109850 59 0.98 109830 48 0.97

Mte
8 4812 0 4914 67 0.78 4927 57 0.72

Mte
9 4762 0 5260 144 0.39 5284 159 0.36

r̄ 2.78 1.22 1.44

a graph is a training instance in our model, the enlarged
training set contains 26 (18+8) graphs in total with more
than 10000 training instances.

We train a machine learning model on the enlarged
training set by solving the dual problem of L1-SVM with
RBF kernel. We denote this model as MLPR26, in contrast to
MLPR8 which is trained only on the 8 easy graphs, M tr

from Table 1 of the main paper. The parameter settings
for MLPR26 and MLPR8 are the same: εm = 10. We test
the efficacy of MLPR26 and MLPR8 methods on the 9 hard
graphs M te. These 9 hard graphs are also from the DIMACS
benchmark, and the number of vertices in these graphs
varies from 1000 to 4000. We apply the MLPR26 and MLPR8

methods to reduce problem size for these 9 hard graphs as
a pre-processing step, and use the TSM algorithm to solve
the reduced problem. The best objective value generated by
TSM within cutoff time (1000 seconds) is regarded as an
indication of the efficacy of problem reduction techniques.

The mean and standard deviation of best objective val-
ues generated in 25 independent runs by TSM, TSM-MLPR8



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

TABLE S5: The results of MLPRsmall, MLPRlarge and MLPRnone when incorporated with the 4 algorithms to solve the 11
large real-world hard instances. ymax, ȳ and σy denote the maximum, mean and standard deviation of best objective values
generated in 25 independent runs within the cutoff time (1000 seconds); and p̄ denotes the mean ratio of selected vertices.
The statistically best ȳ is in bold and the best ymax is in italic. r̄ is the average ranking of each method across all datasets.

Algorithm G MLPRnone MLPRlarge MLPRsmall
ymax ȳ σy p̄ ymax ȳ σy p̄ ymax ȳ σy p̄

TSM

Lte
1 32127 32105 7 1.00 32176 31958 193 0.02 31988 31309 389 0.07

Lte
2 26412 26412 0 1.00 27190 26757 378 0.06 27190 26794 505 0.10

Lte
3 31249 31228 76 1.00 31940 31496 376 0.06 31940 31276 613 0.10

Lte
4 27972 27972 0 1.00 29548 29492 280 0.05 29548 29421 633 0.10

Lte
5 30310 30310 0 1.00 32835 32760 260 0.05 32835 32797 188 0.10

Lte
6 31413 31371 23 1.00 33476 32801 523 0.04 35698 35328 228 0.07

Lte
7 28232 28232 0 1.00 30885 30757 459 0.05 30885 30788 198 0.08

Lte
8 49087 48716 331 1.00 50355 49630 311 0.06 50355 48477 1606 0.08

Lte
9 32791 32658 94 1.00 33085 33085 0 0.05 33085 32910 139 0.08

Lte
10 25924 25637 57 1.00 27775 27726 243 0.05 27775 27730 224 0.11

Lte
11 25205 22749 206 1.00 26558 26323 72 0.06 27500 26617 681 0.11

r̄ 2.55 1.18 1.36

LSCC

Lte
1 27314 23969 1812 1.00 32057 31570 283 0.02 31688 30819 501 0.07

Lte
2 23554 21430 1594 1.00 27190 26625 620 0.06 27190 26119 744 0.10

Lte
3 30129 23923 3195 1.00 31940 31401 695 0.06 31940 31472 650 0.10

Lte
4 27469 23066 2006 1.00 29548 29500 239 0.05 29548 29142 666 0.10

Lte
5 31897 25843 3039 1.00 32835 32685 351 0.05 32835 32751 292 0.10

Lte
6 34058 24984 4322 1.00 35685 35392 231 0.04 35698 35137 260 0.07

Lte
7 30401 24463 2320 1.00 30885 30776 454 0.05 30885 30776 454 0.08

Lte
8 34163 25531 4511 1.00 50355 48305 4371 0.06 50355 47254 3987 0.08

Lte
9 28673 24163 2875 1.00 32783 31011 808 0.05 31815 30482 736 0.08

Lte
10 24215 19373 2411 1.00 27775 27694 403 0.05 27775 27697 389 0.11

Lte
11 25358 21804 2121 1.00 27384 26877 301 0.06 27304 26421 477 0.11

r̄ 3.00 1.00 1.64

WLMC

Lte
1 25293 25293 0 1.00 31452 29533 720 0.02 31876 31170 458 0.07

Lte
2 22332 22332 0 1.00 27190 26253 1063 0.06 27190 26286 1228 0.10

Lte
3 28044 28044 0 1.00 31940 30907 1381 0.06 31940 31108 1058 0.10

Lte
4 20819 20819 0 1.00 29548 29417 654 0.05 29548 29436 387 0.10

Lte
5 29398 29398 0 1.00 32835 32797 188 0.05 32835 32797 188 0.10

Lte
6 26557 26557 0 1.00 33224 32649 527 0.04 35650 33676 1221 0.07

Lte
7 24560 24560 0 1.00 30885 30757 459 0.05 30885 30808 181 0.08

Lte
8 34356 34356 0 1.00 50355 40006 5735 0.06 50355 41912 6377 0.08

Lte
9 32167 32167 0 1.00 32168 32167 0 0.05 32400 32308 104 0.08

Lte
10 24991 24991 0 1.00 27775 27697 389 0.05 27775 27620 539 0.11

Lte
11 25205 25205 0 1.00 24802 24647 41 0.06 25519 25076 385 0.11

r̄ 2.72 1.45 1.00

FastWClq

Lte
1 31155 30666 373 1.00 31422 30728 386 0.02 31293 30569 443 0.07

Lte
2 27190 27025 386 1.00 27190 26678 538 0.06 27190 26458 837 0.10

Lte
3 31940 31854 244 1.00 31940 31738 349 0.06 31940 31116 815 0.10

Lte
4 29548 29548 0 1.00 29548 29548 0 0.05 29548 29316 640 0.10

Lte
5 32835 32165 458 1.00 32835 32750 283 0.05 32835 32718 317 0.10

Lte
6 35035 34790 120 1.00 35169 34975 161 0.04 35195 34835 214 0.07

Lte
7 30885 30885 0 1.00 30885 30638 676 0.05 30885 30731 473 0.08

Lte
8 50355 49912 1932 1.00 50355 50177 166 0.06 50355 48070 1269 0.08

Lte
9 31172 30251 525 1.00 31221 30432 390 0.05 31192 30511 433 0.08

Lte
10 27775 27775 0 1.00 27775 27775 0 0.05 27775 27560 592 0.11

Lte
11 26215 26204 32 1.00 26814 26504 169 0.06 26773 26437 148 0.11

r̄ 1.55 1.09 1.45

or TSM-MLPR26 within the cutoff time are presented in Ta-
ble S4. We can observe that 1) both MLPR8 and MLPR26 can
significantly boost the performance of the TSM algorithm;
2) the problem size reduced by MLPR26 is generally larger
than that by TSM-MLPR8 for these graphs; and 3) MLPR26

does not improve over MLPR8 when incorporated with
TSM to solve the 9 hard problems. It indicates that the training
instances collected from the 8 easy graphs (M tr) are sufficient to
generalize our MLPR model to solve the hard problems of similar
size (M te). However in the next section, we will show that
collecting more training instances from small graphs help
generalize our MLPR model to solve very large real-world
problems with very different characteristics.

C SCALABILITY OF MACHINE LEARNING MODEL
FOR PROBLEM REDUCTION

In this section, we present additional experiments to in-
vestigate the scalability of our MLPR model for problem
reduction. We have observed that our MLPR model trained
on 8 medium-sized synthetic graphs from DIMACS (M tr)
does not generalize well to very large real-world graphs
(Lte) used in the main paper, as it tends to remove too many
vertices from these large graphs. We infer the reason is that
the training instances collected from the 8 medium graphs
are biased and do not cover the feature space well. We then
solved this issue by collecting more training instances from
18 small-sized graphs from DIMACS, listed in Table S3.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Previously, the MLPR model for medium-sized graphs
was trained by solving the dual problem of L1-SVM with
RBF kernel. However the prediction time used by this model
to reduce the size of large graphs is very long (around 300
seconds). Thus we will train the MLPR model by solving
the primal problem of linear L2-SVM (εm = 10), so that
the prediction time can be reduced to around 2 seconds.
We term this model as MLPRsmall, and compare it against
MLPRlarge (trained on large easy graphs Ltr with εm = 10)
as well as MLPRnone (without any problem reduction).
The problem reduction models are then incorporated with
the 4 solution algorithms – TSM, WLMC, LSCC+BMS and
FastWClq, to solve the 11 very large real-world hard graphs
(Lte), and the results are shown in Table S5.

The results show that our MLPR model trained on
small and medium graphs (MLPRsmall) generalizes well to
very large real-world problem instances. The MLPRsmall

model consistently boosts the performance of the 4 solution
algorithms, especially for LSCC+BMS and WLMC which
are ineffective in solving these large problem instances.
Significantly, using our MLPR methods as a preprocessing
step, the LSCC+BMS and WLMC algorithms can generate
an optimal or near-optimal solution for these large problem
instances. We note that the performance of the MLPRsmall

model is slightly worse than the MLPRlarge model. This
makes sense because the MLPRlarge model is trained on very
large real-world graphs with similar size and characteristics
to the test graphs; while the MLPRsmall model is trained
on medium and small graphs which are very different from
the test graphs. The FastWClq algorithm benefits slightly
from our problem reduction techniques in terms of solution
quality, because it is very effective at solving these 11 large
graphs already. These results indicate that our MLPR model
trained on small and medium graphs can be used to effectively
reduce the problem size for very large real-world graphs.

To further show the scalability of our MLPR model, we
apply the MLPRsmall model to other very large real-world
graphs that have not been considered in the main paper:

1) Collaboration and Citation Networks [1]. We select
one citation network “ca-cit-HepTh” and one col-
laboration network “ca-cit-HepPh” whose density
is greater than 0.01. In the ca-cit-HepTh network, a
vertex represents a paper, and an edge from vertex
u to v indicates that paper u cites paper v. In the
ca-cit-HepPh network, vertices represent authors
and edges indicate collaborations between authors.
These networks are based on the scientific papers
from arXiv [2], and have more than ten thousand
vertices and more than one million edges.

2) SNAP Social Network [3]. We use 4 web graphs
from the Stanford Large Network Dataset Collection
[3]. Vertices in the graphs represent web pages and
directed edges represent hyperlinks between them
[4]. These graphs have more than one hundred thou-
sand vertices and several millions of edges. Thus the
density is very low, i.e., around 10−5.

We transfer a directed graph into an undirected graph, and
an unweighted graph into a weighted graph based on the
same rule used in the main paper. Notably, the maximal
weight clique problem in these graphs can be easily solved

TABLE S6: The results of TSM-MLPRsmall when used to
solve other very large real-world graphs. |V | is the number
of vertices; |E| is the number of edges. ymax, ȳ and σy
denote the maximum, mean and standard deviation of best
objective values generated in 25 independent runs; and p̄
denotes the mean ratio of selected vertices. The original
optimal objective value is marked with ∗.

Name |V | |E| ymax ȳ σy p̄

ca-cit-HepTh 22908 2673133 57469∗ 57469∗ 0 0.098
ca-cit-HepPh 28093 4596803 43713∗ 43713∗ 0 0.136

web-Google 875713 5105039 4857∗ 4854 9 0.042
web-NotreDame 325729 1469679 19133∗ 19133∗ 0 0.006
web-BerkStan 685230 7600595 22046∗ 22046∗ 0 0.004
web-Stanford 281903 2312497 6574∗ 6481 134 0.007

to optimality by the TSM algorithm, because these graphs
are very sparse.

We use these graphs to test whether our MLPRsmall

model can 1) significantly reduce problem size for these
graphs; and 2) capture an original optimal solution or
near-optimal solution in the reduced graph. We apply our
MLPRsmall model to reduce the size for each graph as a
pre-processing step, and use the TSM algorithm to solve the
maximal weight clique problem in the reduced graph. We
repeat this process for 25 independent runs to alleviate ran-
domness, and the maximum, mean, and standard deviation
of the best objective values found are shown in Table S6.

We observe that our MLPRsmall model consistently cap-
tures the original optimal solution in the reduced graphs
for the two collaboration and citation networks as well as
two web networks i.e., web-NotreDame and web-BerkStan,
in each of the 25 independent runs. Remarkably, the per-
centage of vertices removed by MLPRsmall from the web-
NotreDame and web-BerkStan networks is huge, i.e., more
than 99%. For the web-Google and web-Stanford networks,
our MLPRsmall model occasionally captures the original op-
timal solution and overall generates a comparable solution
quality, when only a small portion of vertices is selected. The
results from Table S6 confirm that our MLPR model trained on
small and medium synthetic graphs can be generalized to reduce
problem size for very large real-world graphs.

Finally, we note that problem reduction for these large
sparse graphs is less meaningful, because the maximum
weight clique problem in these graphs is typically easy
(quick) to solve by simply using an exact solver. The time
spent on problem reduction may be even longer than the
time required to directly solve the problems in these graphs.

REFERENCES
[1] R. Rossi and N. Ahmed, “The network data repository with in-

teractive graph analytics and visualization,” in Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

[2] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
densification laws, shrinking diameters and possible explanations,”
in Proceedings of the Eleventh ACM SIGKDD International Conference
on Knowledge Discovery in Data Mining. ACM, 2005, pp. 177–187.

[3] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[4] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Com-
munity structure in large networks: Natural cluster sizes and the
absence of large well-defined clusters,” Internet Mathematics, vol. 6,
no. 1, pp. 29–123, 2009.


