IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Using Statistical Measures and Machine
Learning for Graph Reduction to Solve
Maximum Weight Clique Problems

Yuan Sun, Xiaodong Li, and Andreas Ernst

Abstract—In this paper, we investigate problem reduction techniques using stochastic sampling and machine learning to tackle
large-scale optimization problems. These techniques heuristically remove decision variables from the problem instance, that are not
expected to be part of an optimal solution. First we investigate the use of statistical measures computed from stochastic sampling of
feasible solutions compared with features computed directly from the instance data. Two measures are particularly useful for this: 1) a
ranking-based measure, favoring decision variables that frequently appear in high-quality solutions; and 2) a correlation-based
measure, favoring decision variables that are highly correlated with the objective values. To take this further we develop a machine
learning approach, called Machine Learning for Problem Reduction (MLPR), that trains a supervised learning model on easy problem
instances for which the optimal solution is known. This gives us a combination of features enabling us to better predict the decision
variables that belong to the optimal solution for a given hard problem. We evaluate our approaches using a typical optimization problem
on graphs — the maximum weight clique problem. The experimental results show our problem reduction techniques are very effective
and can be used to boost the performance of existing solution methods.

Index Terms—Combinatorial optimization, machine learning, data mining, statistics, problem reduction.

1 INTRODUCTION

L ARGE-SCALE combinatorial optimization problems are
ubiquitous in the real world, e.g., open pit mining [1, 2],
scheduling medical resident training [3] and social network
analysis [4]. These problems are challenging to solve, par-
tially due to the large search space and NP-hardness. Exact
solvers in many cases cannot handle the large problem
size; and heuristic methods may easily get stuck in a local
optimum, resulting in a poor objective value.

A logical way to tackle large-scale optimization prob-
lems is using problem reduction; that is to reduce the
size of an original problem by removing decision variables
and/or constraints that are irrelevant to the optimal solu-
tion. Indeed, the optimal solution to many combinatorial
optimization problems is determined by a relatively small
number of decision variables. For example the maximum
clique of a large graph typically consists of a small pro-
portion of vertices [5]. The other vertices are redundant
variables, that mainly slow down the optimization process.
By removing some of these redundant variables, the original
large search space can be significantly reduced to a size that
is manageable by existing solution methods.

The existing problem reduction techniques for combi-
natorial optimization can be roughly classified into two
categories: exact and greedy methods. An exact method re-
moves decision variables that can not be part of the optimal

e Y. Sunand X. Li are with School of Science, RMIT University, Melbourne,
3001, Victoria, Australia.
E-mail: yuan.sun@rmit.edu.au; xinodong.li@rmit.edu.au

e A. Ernst is with School of Mathematical Sciences, Monash University,
Clayton, 3800, Victoria, Australia.
E-mail: andreas.ernst@monash.edu

Manuscript received May 3, 2019; revised September 30, 2019; accepted
November 11, 2019.

solution based on analytical reasoning (e.g., a definition of
objective bound) [6-10]. A greedy method, on the other
hand, removes decision variables that are unlikely to be
part of the optimal solution based on a measure of fitness
or quality [10-13]. An exact method can guarantee that
the reduced problem always captures the original optimal
solution; but in many cases it can not effectively reduce the
problem size. Thus, we will focus on the greedy approach
in this paper.

Machine learning techniques have been successfully
used to boost the performance of branch-and-bound (B&B)
algorithms [14-17] and heuristic methods [18-20]; and have
also been used to automatically design solution algorithms
[21-25]. However, despite of its popularity machine learning
has not been extensively applied for problem reduction.
Although a high-level idea of applying data mining and
machine learning to problem reduction has been described
in [12], no detailed method description or experimental
evaluation is given. More recently a machine learning model
has been trained to estimate the probability of a decision
variable being a part of an optimal solution [25], however
this estimated probability has not been explicitly used to
reduce problem size as a preprocessing step.

In this paper we propose to use statistical measures
and machine learning for problem reduction, by greedily
removing decision variables from a problem instance that
are unlikely to be part of the optimal solution. First we use
statistical measures computed from stochastic sampling of
feasible solutions to evaluate the “quality” of each decision
variable. Particularly we describe two measures for this:
1) a ranking-based measure, favoring decision variables
that frequently appear in high-quality solutions; and 2) a
correlation-based measure, favoring decision variables that

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

are highly correlated with the objective values. We then use
these measures to guide the problem reduction process.

To take this further we develop a machine learning
approach for problem reduction that we call Machine Learn-
ing for Problem Reduction (MLPR). We model problem
reduction as a binary classification problem and use an off-
the-shelf supervised learning algorithm to train the model
on easy problem instances for which the optimal solution
is known. This gives us a combination of features enabling
us to better predict the decision variables that belong to the
optimal solution for a given hard problem.

We evaluate our approaches using the Maximum Weight
Clique (MWC) problem (see Section 2.2 for more details).
The experimental results on benchmark and real-world
datasets show that our proposed methods are effective and
outperform the problem reduction methods directly com-
puted from graph data. We test four existing solution meth-
ods and show they can benefit greatly from using our graph
reduction methods as a preprocessing step. As a by-product
of our methods we can generate a decision variable ordering
that can be used to significantly improve the performance
of B&B algorithms. Overall the MLPR approach is generally
more robust than using a single statistical measure, but this
method is more complex to implement as it requires initial
training on a set of optimally solved instances.

The remainder of this paper is organized as follows. In
Section 2, we describe the background and related work.
In Section 3 and 4, we propose the statistical measures and
MLPR respectively. In Section 5, we describe experimental
methodology and present results. The last section concludes
the paper and suggests future research directions.

2 RELATED WORK

In this section, we briefly review the existing learning-based
algorithms for combinatorial optimization, and solution
methods for the MWC problem.

2.1 Learning-based Algorithms for Combinatorial Opti-
mization

There is an increasing interest in using machine learning
techniques for solving combinatorial optimization problems
[26]. We briefly review these methods in three categories: 1)
improving B&B algorithms; 2) improving heuristics and 3)
designing heuristics automatically (hyper-heuristics).

Firstly, improving the performance of B&B algorithms
via machine learning is a very active area of research re-
cently. For example He et al. [15] used imitation learning
to learn a branching variable selection policy; Khalil ef al.
[16] built a surrogate model to mimic the strong branching
strategy; Di Liberto et al. [27] used a clustering method to
determine the best time to switch the branching variable
selection heuristic; Khalil et al. [28] used logistic regression
to determine when to run a given heuristic; and Balcan et al.
[17] trained a machine learning model to learn an optimal
weighting of partitioning procedures to reduce the tree size.
Here we have only briefly mentioned some representative
examples. Interested readers are referred to [14] for a more
comprehensive literature review.

Secondly, machine learning has also been used to en-
hance the search ability of heuristic methods. Boyan and

2

Moore [18] built a machine learning model to evaluate a
local search method to generate a smart restart rule. Shylo
and Shams [19] trained a logistic regression model using
samples generated by Tabu search to predict components
of an optimal solution, which are in turn incorporated
into Tabu search to boost its search ability. Martins et al.
[20] extracted components that frequently appear in high-
quality solutions generated by a hybrid heuristic, and used
the extracted components to guide the construction of new
solutions for a local search method to refine.

Thirdly, machine learning can also be used to auto-
matically design heuristics, under the umbrella of hyper-
heuristics [29, 30]. For example Zhang and Dietterich [21]
and Khalil et al. [23] used reinforcement learning to learn a
greedy policy that aims to find high-quality solution quickly.
Vinyals et al. [22] designed a new neural architecture called
pointer network that can be trained to solve combinatorial
optimization problems. Fischetti and Fraccaro [31] built a
supervised learning model to predict the value of optimal
solutions for the offshore wind farm layout optimization
problem. Burke et al. [32] and Nguyen et al. [33] used
genetic programming to automatically design heuristics for
packing and job shop scheduling problems. Recently Li
et al. [25] trained a deep graph convolutional network to
estimate the probability of a decision variable belonging to
an optimal solution. The predicted probability maps over
decision variables are then used to construct a number of
high-quality solutions, leveraged by a tree search procedure.
Some of these studies, especially [25], have implicitly used
the problem reduction idea to reduce the probability of
exploring the variables that are unlikely to be part of an
optimal solution. In contrast, we will propose an explicit
problem reduction method that removes these redundant
variables from a problem a priori.

It is worth noting that there are other methods that
do not fit into the three categories described above, e.g.,
learning combinatorial problem models [34], and selecting
the best algorithm for solving a given problem [35, 36].
However, we will not review these methods here due to
the page limit. Interested readers are directed to [26].

Despite the popularity and success of applying machine
learning to combinatorial optimization, machine learning
has not been intensively studied to reduce problem size
as a preprocessing step. Although there have been some
other methods that use the idea of problem reduction, e.g.,
merge search [37], the construct, merge, solve and adapt
(CMSA) method [38], pruning heuristic [11], sketching
method [39, 40], ant colony optimization [41] and estimation
of distribution algorithm [42, 43], they are typically designed
within the context of a specific algorithm or for a particular
type of problems. Unlike these we will propose a generic
approach based on machine learning that can be adopted as
a preprocessing step for any existing solution method and
is potentially applicable to a wide range of problems.

2.2 Solution Methods for Maximum Weight Clique
Problem

In an undirected graph G(V, E, W), where V' denotes the set
of vertices, E denotes the set of edges, and W denotes the
weight of vertices, a clique C'is a subset of V' in which each

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

O O}

@ @

Fig. 1: An illustration of the MWC problem. The subscript
of each vertex denotes the vertex index and the superscript
denotes the vertex weight. The MWC of the given graph is
{v3,v3, v3} with total weight of 10.

pair of vertices are adjacent. The MWC, as its name suggests,
is a clique with the largest total weight of its vertices (see Fig.
1 for an example). Let G(V, E,W) denote the complemen-
tary graph of G(V, E, W), where the edge set £ contains all
the edges that are not in E: E = {(i,5)|V(i,7) ¢ E}. We
use a binary string x to represent a clique; ; = 1 means
vertex v; is in the clique; otherwise it is not. Formally the
MWC problem can be defined as

V]

st. x;+x; <1, V(i j) € E, 2)

This problem has a wide range of applications, e.g., pro-
tein structure prediction [44], computer vision [45, 46] and
genomics [47].

Searching for a MWC in a given graph is NP-hard. A
large number of algorithms have been proposed to tackle
this problem including exact solvers and heuristic methods [5].
The representatives of exact solvers include MWC based
on MaxSAT reasoning [48], weighted large maximum clique
[7], MWC based on two-stage MaxSAT reasoning [8]; MWC
based on weight cover [49]; and conflict directed clause
learning [50]. These algorithms differ mainly in the upper
bound calculation and branching strategy used, and typi-
cally have difficulty in scaling up to large dense graphs.

On the other hand the heuristic methods for this problem
include phased local search [51]; multi-neighbourhood Tabu
search [52], fast weight clique [53], local search configuration
checking with best from multiple selection [54], restart Tabu
search based on a “push” operator [55], and restart and
random walk based local search [56]. These methods can
find a good solution quickly for small and medium-sized
graphs, however unable to solve instances in very large
graphs that have many local optima. Recently, a CPU-GPU
local search method based on new neighborhood structures
has been proposed for solving large instances [57]. In this
paper we tackle large-scale graph problems from a different
perspective; that is to reduce the problems to a size that is
manageable by existing solution methods.

3 STATISTICAL MEASURES FOR PROBLEM RE-
DUCTION
In this section, we first describe the random sampling

method used to generate feasible solutions. We then de-
scribe the two proposed statistical measures in detail.

Algorithm 1 RANDOM_SAMPLING(V, W, B, n)

Require: vertex set V; weight W, neighbors B; number of
cliques to generate n;

1: foriin 1 ton do

2: Initialize the i, clique C; < §;

3 Initialize the objective value y; < 0;

4: Initialize vertex set V. < {1,2,--- ,|V|};

5: while V, is not) do

6: Randomly select a vertex v, from V;

7 Add v, to the clique Cj;

8: Accumulate the weight: y; < y; + ws;

9: if |C;] is equal to 1 then

10: | V. <+ B, in ascending order;
11: else
12: | V.« INTERSECTION(V,, B;);

13: return C = {C1,--- ,Cn}, Y ={y1, - ,yn}

Algorithm 2 INTERSECTION(V,, B;)

: Sort the vertices in B in ascending order;
: Initialize V; < 0; k1 < 1; ko < 1;
while k1 < |V| and k2 < |B;| do
if Vi [k1] < Bs[k2] then
‘ ki< ki +1;
else if V.[k1] > B;[kz] then
ko < ko +1;
else
Add V.[ki1] to V;;
ki< ki +1;, ko< ko+1;
return V;.

SO0 RPND TN

_ =

3.1

The high-level idea of the random sampling method is to
construct a solution by incrementally adding a randomly
selected decision variable. Here we use the MWC problem
as an example; thus a feasible solution refers to a clique and
a decision variable refers to a vertex. The detailed procedure
of the random sampling method (Algorithm 1) that we use
to generate a clique is

Random Sampling Method

1) Initialize a clique C' as empty; the objective value y
as 0; and a candidate vertex set V. as V;

2) Randomly select a vertex v, from V,; add v, to C
and accumulate the vertex weight w;;

3) Update the candidate set V. as the intersection of
v,’s neighbors (B;) and V;

4) Repeat Step 2) to 3) until V, is empty, and a clique
C is generated.

This process can be repeated multiple times (n) in order to
generate multiple solutions. It is worth noting that while
this sampling method is not explicitly greedy, it is biased
towards generating larger cliques. That is because vertices
from large cliques are more likely to be selected at each
iteration of the algorithm, as there are more of them. As-
suming that vertex weights are uncorrelated with the size
of the cliques that they are part of, this leads to a bias
towards higher weight cliques. Also only maximal cliques
are generated in this manner.

In Step 3) of the sampling method, the vertices that
are not adjacent to the newly added vertex (v,) should be
removed from the candidate set V., in the sense they cannot
form a clique with v. This removing step (or equivalently
computing the intersection between V. and v,’s neighbors

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

By) is crucial, as it determines the time complexity of the
sampling process. A naive approach that performs pair-
wise comparison between the vertices in V. and B, costs
O(|V,||Bs]). In Algorithm 2 we describe a more efficient
approach for computing the intersection, that only requires
a linear scan through V, and B;. To achieve this we need to
sort the vertices in B, by their indices in ascending order. To
avoid any redundant sorting, we can keep track of whether
the neighbors of a vertex have been sorted before. Note that
the vertices in V. are already in sorted order.

We loop through V. and B, using two auxiliary vari-
ables k; and ks to denote the current working index of
V. and B, both initialized to 1. We compare the kiip
vertex in V. (V.[k1]) with the ko, vertex in B, (Bslka)).
If V.[k1] < Bslkz] we increment k; by 1, in the sense that
Ve[k1] can not be in By, as V.[k1] < B,lka] < Bg[k| for any
k = ko + 1,---,|Bs]|. For a similar reason we increment
ks by 1 if V.[k1] > Bslke]. If V.[k1] = Bslk2] we find a
common vertex and add this vertex to the new candidate
set V;, initialized as empty; we then increment both k; and
ko by 1. This process is continued until all the vertices in V,
or B, have been checked. The new candidate vertex set V;
is returned, with the vertices in V; already in sorted order.
Note that initially when V. is equal to V, the intersection
between V, and B; is simply B;.

Lemma 1. The time complexity of generating n cliques us-
ing the random sampling method (Algorithm 1) is O(n|E| +
|E|log(|V])), where |V'| and |E| are the number of vertices and
edges in a given graph.

Proof. First, we assume the neighbors of each vertex are
sorted and show the time complexity of generating a clique
C is in O(|E|). We will use the fact that the number of
comparisons required to identify the intersection between
Veand By isin O(|V.|[+|Bs|). Let {vs,, vs,, -+, Vs, } denote
the sequence of vertices added into C; B, denote the neigh-
bor set of v;,; and V., denote the candidate vertex set before
v, is added into C, where 1 < i < |C|. The total number
of comparisons performed to compute the intersection is in
the order of ZLZ‘Q (|Ve,] + |Bs,]), as adding the first vertex
into C' takes O(1) time. It is true that |V,,| < B,,_,, for any
i =2, |C]. Thus, S1Z) (|Ve,| + [Ba,]) < 25010 |Bs,
< 2|E| € O(|E|). Note that the relaxation used here is very
conservative, in the sense that Eli'l | Bs,
less than | E| especially in a sparse graph.

Second, we consider the case where the vertex neighbors
(B) have not been sorted. In the worst case, the neighbors
of each vertex need to be sorted once. If using MergerSort,
the number of comparisons used by sorting is in the order
of 1% |Billog(Bi]) < S1Y |Billog(|V) = |E|log(|V').
Thus the time complexity of sorting is O(|E|log(|V])). !

In short, the total time complexity of generating n cliques
is in O((n|E| + |E|log(]V])). Note that in our experiments
n >> log(|V]), thus the time used in sorting is negligible.

O

is usually much

1. In our experiments, we will use QuickSort due to its simplicity,
in-place property, and average time efficiency. Although the worst case
time complexity of QuickSort is quadratic, it rarely happens in practice.

Algorithm 3 RANKING-BASED MEASURE(C, Y/, n)

[y

: Sort the cliques in C based on objective value Y’; use r; to
denote the ranking of 4;5, clique Cj;

2: Initialize f,(v;) < 0, for each v; € V;
3: fori from 1 ton do

4 for j from 1 to |C;| do

5: v+ Ci[j];

6: fr() « fr(v) +1/rs;

7: return f,.

3.2 Statistical Measures

Based on the generated sample solutions, we design two
statistical measures to quantify the “quality” of each deci-
sion variable (i.e., vertex). Our measures are motivated by
the observation that many optimization problems have a
“backbone” structure [5]. In other words, high-quality solu-
tions potentially share some components with the optimal
solution. Our goal is to extract the shared components from
high-quality solutions, and reduce the original search space
such that it is manageable by existing algorithms.

3.2.1 Ranking-Based Measure

Let C; denote the ¢, generated clique, and y; denote its ob-
jective value, where i = 1,--- ,n. We sort the cliques based
on their objective values in descending order, and use r;
to denote the ranking of C;; smaller ranking indicates better
solution quality. Let x; denote the binary string representing
C;, where z; ; = 1if v; is in C; and z; ; = 0 otherwise. The
ranking-based measure for each vertex is defined as

n

fr(vj) = ZM’

=1 i

(4)

where 1 < j < |V|. It basically accumulates 1/r; across the
cliques that include v;. Two factors contribute to the accu-
mulation: 1) the frequency that v; appears in the cliques;
and 2) the ranking of cliques that v; is part of. Vertices with
a large accumulated score are regarded as high-quality and
are likely to be part of the optimal solution. By removing
the vertices for which the score is less than a threshold
(fr(vj) <€), the graph size can be significantly reduced.

In practice, it is not efficient to represent a clique using
a binary string in terms of time and space complexity.
Instead we can represent a clique by a set of vertices it
includes, i.e., using set representation C'. The time and space
complexity for accumulating the ranking-based score can
then be reduced from O(n|V|) to O(X_;", |C;|), that makes
a significant difference for large sparse graphs. In Algorithm
3, we show how to calculate the ranking-based measure
using the set representation C'. Basically, we iterate through
each vertex in each clique, and accumulate the measure
fr(vj) by 1/7; if vertex v; is in clique C;.

3.2.2 Correlation-Based Measure

As before, we use C; and y; to denote the i, generated
clique and its objective value, where ¢ = 1,--- ,n. We use a
binary string x; to represent C;, where z; ; = 1 if v; is in
C; and z; ; = 0 otherwise. The correlation-based measure

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

calculates the Pearson correlation coefficient between each
vertex and the objective value across the generated cliques:

i (@i — %) (yi —) 5
f (v]) \/Zz 1 xlj _ajj \/Zz 1 yl _y) ()
where 7, = YI' z;;/n, and § = Y., y;/n. As our

objective is maximization, vertices that are highly positively
correlated with the objective values are likely to be in the op-
timal solution. On the other hand the vertices for which the
correlation score is less than a given threshold (f.(v;) < €.)
may be removed from a graph, without sacrificing much of
the solution quality.

Calculating our correlation-based measure directly using
binary string representation costs O(n|V]). To improve the
time efficiency, we simplify the calculation of Peason corre-
lation coefficient as follows.

Lemma 2. For binary variable x; ;, the following equality holds:

n

> (@i —

i=1

7;)? = z;(1 — &;)n, (6)
where T; =Y. | x; j/n.
Proof. For simplicity, we denote Y7 (2;,; — Z;)? as 04,. As
2, j is binary variable,
0z, =mn1(1 — ;)% + no(0 — 25)?, @)

where n; and ng count the number of 1s and Os in binary
variables 1 j, %2, -, Ty ;; thatis ny = Z,?zl Tij = NI
and ng = n — ny. Thus,
= nfj(l—ij)2+(n—n:fj)(0—:fj) =Z;(1-Z;)n. (8

O

Oz,

Lemma 3. For binary variable x; j and variable y;, the following
equality holds:

n

> (@i

i=1
where T; = Y1 1 xii/n, Y= >y yi/n; and

—Z;)(yi —9) = (1 —%5)s51 — Tjs50, (9)

85,1 = Z (Yi =), sj0= Z (yi — 7). (10)
1<i<n 1<i<n
T ;=1 z;,;=0

Proof. For simplicity, we use 0., to denote > ", (w;; —

Z;)(y; — §). Using the fact that x; ; is a binary variable,
n
o= 3 -0+ 3 020
i=1
x:,jzl ;cl ,—O

I

Il =

=(1-1z) (¥ —9) + (0 —)

||£M3

1

= (1—12;)sj1 — Z;sj0-

1

Sl

)
O

Having these simplifications, we present in Algorithm 4
a method to calculate the correlation-based measure using
set representation. The key step is to iterate through each
vertex in each clique to calculate Z; and s;; (line 6 to 10).
Then o,,, 0, and thus our correlation-based measure can be
easily computed. The total time complexity is O(>_;"; |Cy|).

Algorithm 4 CORRELATION-BASED MEASURE(C, Y, n)

1: Calculate the mean objective value: § < >""_| yi/n;
2: Calculate the objective difference: yq < >7"_, (vi — 9);
3: Calculate the objective “variance”: oy < > i, (yi — §)%;
4: Initialize the mean z; «+ 0, for each v; € V;
5: Initialize s;,1 < 0 for each v; € V;
6: fori from 1 ton do
7: for k from 1 to |C;| do
8: Jj « the index of vertex C;[k];
9: Tj < Tj+ 1/77,,'
10: 51 =81+ (yi —)
11: for j from 1 to |V] do
12: Uc] =1 —a5)sj1 — Zj(ya — s5.1);
13: =z;(1 —z;)n;
| Sl 2 ou, / joaoy.
15: return f..

4 MACHINE LEARNING FOR PROBLEM REDUC-
TION

In this section, we describe our machine learning approach
for problem reduction MLPR. We model problem reduction
as a typical classification problem, and use an off-the-shelf
machine learning algorithm to train the model, taking our
statistical measures as features.

4.1 Modelling

We use easy graphs that we know the optimal solution
(i.e., MWC) as the training dataset. We treat each vertex
in a graph as a training instance, and assign a class label
1 to vertices that belong to the optimal solution and —1 to
those who do not. We use our proposed statistical measures
as features combined with those directly computed from
graph data (see Section 4.2 for details). This becomes a
typical binary classification problem. We will use support
vector machine (SVM) [58, 59] to train the model though
any supervised learning algorithm fits here. For a given
hard graph where we do not know the optimal solution,
the trained model can be used to predict a class label for
vertices in this graph. The vertices with a predicted label
—1 will be removed from the graph, so that the graph size
can be significantly reduced. The main steps of our MLPR
method are summarized as follows:

1) Solve the MWC problem to optimality for selected
easy graphs using an exact solution method.

2) Extract features and assign a class label for each
vertex in the easy graphs and construct a training
dataset.

3) Train a classification model using a machine learn-
ing algorithm.

4) Predict a class label for each vertex in a given hard
graph using the trained model, and remove vertices
from the graph that are predicted to be —1.

We can then use an existing solution method to solve the
MWC problem in the reduced graph.

4.2 Feature Extraction

Apart from the two statistical measures described in Section
3, we compute four other features directly from graph
data to characterize a vertex (training instance). These six

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

features will be used as inputs to the machine learning
model:

1) Vertex weight: f.,(v;) = w;. The vertex weight is an
important feature as our optimization goal is to find
a clique with maximum weights of its vertices.

2) Vertex degree: fq(vi) = |B;|, where B; :=
{Vv;|v; € VA(v;,v;) € E}. The degree of a vertex
is the number of its neighbours. Vertices with a high
degree are more likely to form a large clique.

3) Upper bound: f(v;) = w; + ;e p, w;. The value
fv(v;) defines an upper bound on the weight of
cliques that include wv;. Vertices with an upper
bound value smaller than the best known objective
value can be removed from the graph.

4) Graph density: fgen(vi) = 2/E|/(|V|(|V] — 1)).
Graph density is an important feature, in the sense
that the percentage of vertices that form a MWC in
a dense graph is usually larger than that in a sparse
graph. Note that the value of f4., is identical for
vertices in the same graph.

5) The ranking-based measure described in Section
32.1: f.

6) The correlation-based measure described in Section
32.2: f.

The six features we derived are not in the same scale,
which can have a great impact on the performance of
classification algorithms. Thus, we normalize the features
to a similar range to avoid the dominance of large-valued
features. Specifically for each graph, we normalize the fea-
tures by their maximum value in the graph except for graph
density. For example we normalize the vertex weight in

a graph by fu(vi) = wi/wpn, where wy, = max w;

denoting the maximum vertex weight in the graph.

4.3 Support Vector Machine Classification

After a training dataset is constructed, we use SVM to train
a supervised learning model.

4.3.1

Given training dataset: feature vectors f; € R"”, and class
label ¢; € {—1,1},i = 1,--- ,m, the SVM classification al-
gorithm solves the following primal optimization problem:

General Formulation

I =
min Sa a+r;g(£¢), (12)
st ci(a”d(fi)+b) >1—¢&, i=1,--m, (13)

where ¢(f;) maps the feature vector f; into a higher-
dimensional space; r > 0 is the regularization parameter; ;,
i=1,---,m are slack variables and g¢(-) is a loss function.?
The first and second order loss functions, g(§;) := & and
g(&) = &2, are widely used. We will denote SVM with first
order loss function as L1-SVM and the other as L2-SVM.

2. In machine learning literature, the commonly used mathematical
notations for SVM formulations are: feature vector x, class label vector
y, weight vector w and regularization parameter C. We use different
notations here as these symbols have been used in Section 3.

4.3.2 Handling Unbalanced Data

In our training dataset, the number of positive training
instances (with class label 1) is typically much less than the
number of negative training instances. The traditional SVM
algorithm tends to classify the negative instances better
than the positive instances. However in our application
misclassifying a positive instance is much harmful than
misclassifying a negative instance. If a positive instance is
misclassified, the reduced optimization problem no longer
captures the original optimal solution. On the other hand
misclassifying a negative instance only results in a slight
increase of the reduced problem size. In this sense, we
will penalize misclassification of positive instances more by
using a larger regularization parameter 7", in contrast to
that of negative instances r~. The refined primal problem
becomes

min

a,b,g

%aTa + T Z g(&) +r~ Z 9(&), (15)

c;i=1 ci=—

subject to Eq. (13) and (14).

4.3.3 Training Medium-Sized Data

In our experiments, we will consider medium-sized dataset
with thousands of instances and large-sized dataset with
millions of instances. To train the medium-sized dataset, we
map the feature space into a higher-dimensional space using
a non-linear mapping ¢(-) to achieve a better classification
accuracy. To avoid the need to explicitly calculate the map-
ping function, we solve the dual problem of L1-SVM:

n&in %aTQa —ela, (16)
st. la= 0, 17)
0<a; <r", Vi|y; =1, (18)
0<aq,<r ,Vily, =—1, (19)

where e = [1,--- ,m]T is the vector of all ones, Q is an m x
m positive semidefinite matrix, and Q;; = c;c; K(fi, f;),
and K(fi, f;) = o(fi)o(f;) is the kernel function. The
kernel function avoids the need to compute ¢(-), thus is
computationally efficient.

We have considered different kernel functions in our
experiments, i.e., linear, polynomial, sigmoid and Radial
basis function (RBF), and we observed the RBF kernel per-
forms the best. Thus we will use the RBF kernel to train
the medium dataset, which is defined as K,u¢(fi, f;) =
exp(—||fi — fjl|?), where v is a kernel parameter. The
RBF kernel maps the feature space to an infinity dimen-
sional space. We will use the SMO-type (Sequential Minimal
Optimization) decomposition method [60] implemented in
the LIBSVM library [61] to solve the dual quadratic opti-
mization problem. The training process for the medium-
sized dataset with thousands of instances takes less than 1
second. After the dual problem is solved and the optimal
parameter values o and b* are obtained, the predicted
class label for a given new instance f is determined by

sgn (52, ciof K(fi, f) +b7).

4.3.4 Training Large-Sized Data

To train the large-sized dataset with millions of instances,
solving the dual problem is very time consuming. We have

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

tried to solve the dual problem of L1-SVM with RBF kernel
for large-sized dataset on a desktop computer and it took
more than 4 days. Thus, we will instead solve the primal
problem with a linear mapping ¢(f;) = f; to gain com-
putational efficiency. As the primal problem of L1-SVM is
not differentiable, we will use L2-SVM that is solved by
the trust region Newton method [62] implemented in the
LIBLINEAR library [63]. The training time for the large-
sized dataset can be significantly reduced to around 60
seconds. After the primal problem is solved and the optimal
parameter values a, and b, are obtained, the predicted
class label for a given new instance f is determined by
sgn (al f +b,).

5 EXPERIMENTS

We use simulation experiments to show the efficacy of our
proposed methods for problem reduction. In Section 5.1,
we investigate whether the reduced problem generated by
our proposed methods can capture the optimal solution to
the original optimization problem. In Section 5.2, we try to
boost the performance of existing solution methods by using
our problem reduction techniques as a preprocessing step.
In Section 5.3, we investigate whether the vertex ordering
generated by our proposed methods can be used to improve
the performances of B&B algorithms.

We use 17 medium-sized synthetic graphs from DI-
MACS [64] (which have more than 1000 vertices) and 25
very large real-world graphs from human brain networks
[65] as our datasets.®> A brief description of these graphs
is given in Table 1. The original graph is unweighted. So
we assign to a vertex v; (1 = 1,---,|V]) a weight w; = (4
mod 200) + 1, following the previous works [7, 8, 51]. We
divide the graphs into two sets: 1) easy graphs, for which an
optimal solution can be generated by the TSM algorithm [8]
within the cutoff time (1000 seconds); and 2) hard graphs,
for which an optimal solution can not be generated by TSM
within the cutoff time.

All the source codes are implemented in C and C++, and
are compiled using GCC/7.3.0-2.30.* The experiments are
performed on a high performance computing system.

5.1 Efficacy of Graph Reduction Techniques
5.1.1 Setup

We use easy graphs to investigate the maximum problem
size one method can reduce without losing the original
optimal solution. We sort the vertices in a given graph by
our ranking-based measure f;, correlation-based measure f,.
or machine learning approach MLPR (denoted as ml). For
MLPR we rank the vertices based on their distance to the
decision boundary, i.e., (af f+ b*). We then select the top
5%, 10%, - -+, 100% vertices each as a sub-problem solved
by TSM to see how many vertices are required in order to
capture the optimal solution. We compare our approaches
against the features computed directly from graph data,
ie., vertex weight f,, vertex degree f; and upper bound

3. The datasets can be downloaded from Network Repository [66]:
http:/ /networkrepository.com

4. The C++ and C source codes are publicly available online at
https:/ /github.com/yuansuny /mwc

7

TABLE 1: A brief description of the datasets used in our
experiments. |V is the number of vertices; | E| is the number
of edges; and d is the graph density. The datasets labeled as
M are medium graphs from DIMACS; and those labeled as
L are large real-world graphs from human brain networks.
The datasets marked with ¢r are easy graphs for training
and those marked with te are hard graphs for testing.

ID Name V] |E| d

M}t p_hat1000-1 1000 122253 0.2448
ML™ p_hatl000-2 1000 244799 0.4901
Mi" p_hatl000-3 1000 371746 0.7442
M%T p_hat1500-1 1500 284923 0.2534
M p_hat1500-2 1500 568960 0.5061
Mér DSJC1000.5 1000 249826 0.5002
MI" san1000 1000 250500 0.5015
M hamming10-2 1024 518656 0.9902
M ie p_hat1500-3 1500 847244 0.7536
Mz C1000.9 1000 450079 0.9011
M%" C2000.5 2000 999836 0.5002
M, %e C2000.9 2000 1799532 0.9002
Mg C4000.5 4000 4000268 0.5002
Mt MANN_a45 1035 533115 0.9963
Mge MANN_a81 3321 5506380 0.9988
M%e hamming10-4 1024 434176 0.8289
Mge keller6 3361 4619898 0.8182
Lir bn---865_session_1 734561 331832178 0.0012
Lir bn---865_session_2 714808 310365050 0.0012
L%" bn---867_session_1 747410 290552588 0.0010
Ly bn---867_session_2 735023 309338060 0.0011
Ltr bn---869_session_1 690519 270077834 0.0011
Lgr bn---869_session_2 716150 303089830 0.0012
LZT bn---870_session_1 797293 297509236 0.0009
Lt bn---870_session_2 810505 333612086 0.0010
L%ST bn---871_session_1 747343 337358624 0.0012
L%d bn---873_session_1 645518 299094892 0.0014
L bn---873_session_2 692397 280204316 0.0012
L bn---886_session_1 780185 316369494 0.0010
Ly bn---889_session_2 742862 263853546 0.0010
Lt bn---912_session_2 781747 295125104 0.0010
Lie bn---864_session_1 696338 286316678 0.0006
L& bn---864_session_2 692957 267455032 0.0006
Lte bn---868_session_1 727487 300887106 0.0011
L?f bn---868_session_2 728087 317241858 0.0012
L%e bn---871_session_2 734729 342011384 0.0013
L?e bn---872_session_2 768677 295622274 0.0010
Lf‘ bn---874_session_2 769392 327046802 0.0011
Lg bn---876_session_1 789979 280724852 0.0009
L?e bn---876_session_2 779330 279742484 0.0009
LG bn---878_session_1 699697 255812256 0.0010
LS bn---889_session_1 704694 288939700 0.0012

fv. As our methods are based on stochastic sampling, we
repeat the experiments 25 times to alleviate randomness,
and the Wilcoxon rank-sum test (significance level = 0.05)
with Holm p-value correction [67] is used to determine
statistical significance. Note that the features computed from
graph data are deterministic. We simply repeat the results
generated by these graph features 25 times to conduct
statistical tests.

For MLPR, we train a separate model for medium and
large graphs, as discussed in Section 4. We use a “leave-one-
out” strategy to construct the training dataset. For example
to test on graph M{", we train a model using the other
7 medium graphs (M4 to M{") as the training dataset.
Note that in our MLPR model, a training instance refers

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

to a vertex instead of a graph. Thus the medium training
dataset roughly contains thousands of instances and the
large training dataset contains millions of instances.

The parameter setting used is: the number of randomly
generated solutions n = 10+/[E|; kernel parameter v =
1/ny where ny is the number of features; regularization
parameters 7~ = 1 and rT = eun_1/ny, where n_; and
n, are the number of negative and positive instances in the
training set, and €, controls the penalty for misclassifying
positive instances. We have tested multiple €, values and
found €, = 1 performs well for training medium dataset
(using RBF kernel) while €, = 100 is good for training large
dataset (using linear feature space mapping).

5.1.2 Results

The mean ratio of vertices required by each method to
capture the optimal solution is presented in Table 2. We can
observe that it is possible to generate an optimal solution
to the original problem by solving a reduced problem,
especially for sparse graphs. Our MLPR method generally
requires the least number of vertices in order to capture
the optimal solution. Our statistical measures outperform
the problem specific features on medium graphs and gen-
erate comparable results with the vertex degree (f;) and
vertex bound (f;) features on large graphs. The vertex
weight feature f,, is effective for some medium graphs (e.g.,
ML"), however very ineffective for large graphs. It is not
surprising that the performances of vertex degree f; and
vertex bound f;, features are highly correlated; they are more
effective for large sparse graphs than medium dense graphs.

In Fig. 2, we plot the number of selected vertices against
the best objective value found in the corresponding sub-
problem for some selected graphs. We can observe that the
curves generated by our statistical measures and MLPR, in
many cases, are on top of those generated by problem spe-
cific features. The error bar generated by MLPR generally
converges faster than the statistical measures, especially on
M}" (Fig. 2b).

We have considered four kernel functions, i.e., linear,
polynomial, sigmoid and RBEF, when training medium-sized
dataset, and the results are presented in Table 3. We can
observe that the RBF kernel generally requires the least per-
centage of vertices to capture the original optimal solution.
Thus we will use RBF kernel to train medium-sized dataset
in the rest of our experiments.

The feature weights from the primal problem of SVM,
i.e., vector a in Eq. (13), is an indication of how important
the features are in terms of classification tasks. To investigate
the feature importance in our model, we solve the primal
problem of linear L2-SVM using LIBLINEAR (¢,,, = 100).
The optimal weights associated with each feature in the
trained models of the medium and large datasets are pre-
sented in Table 4. The features except for graph density
are normalized by their maximum value in a graph, thus
they have a maximum value of 1. On the medium dataset,
our statistical measures f, and f. have the largest absolute
value of the optimal weights, thus contribute the most to the
classification tasks. On the large dataset, the optimal weight
of fgen has a large absolute value, because the density of
these graphs is very small (around 10~3); the multiplication

8

TABLE 2: The average percentage of vertices required by
each method in order to capture the original optimal so-
lution in the reduced problem. The statistically best per-
centage for each graph is in bold. The second to last row
calculates the mean percentage required by each method
across 22 (8 + 14) graphs and 25 independent runs. The
last row denotes the p values from statistical tests when
comparing ml against each of the other methods, taking the
550 (22 x 25) ratios generated by each method as input.

G fu fa o Ir Jfe ml
Mir 0.30 0.50 0.50 0.43 0.30 0.27
Mir 1.00 0.25 0.25 0.21 0.24 0.18
M:’;T 0.50 0.35 0.35 0.35 0.46 0.33
Mir 0.60 0.50 0.45 0.38 0.35 0.24
MEr 0.95 0.25 0.25 0.20 0.19 0.17
MEr 0.50 0.95 0.65 0.45 0.39 0.38
MEr 0.15 0.80 0.75 047 032 0.38
MEr 1.00 1.00 1.00 0.98 1.00 0.99
Lir 1.00 0.10 0.10 0.06 0.11 0.06
Lir 1.00 0.05 0.05 0.05 0.05 0.05
LY 1.00 0.05 0.05 0.06 0.11 0.05
Lir 1.00 0.05 0.05 0.05 0.08 0.05
Lt 1.00 0.05 0.05 0.07 0.09 0.05
LE 1.00 0.05 0.05 0.05 0.08 0.05
Lir 1.00 0.15 0.15 0.22 0.22 0.17
Lt 1.00 0.05 0.05 0.05 0.06 0.05
LE 1.00 0.10 0.10 0.09 0.22 0.07
Lty 1.00 0.05 0.05 0.05 0.05 0.05
L 1.00 0.10 0.10 0.08 0.08 0.05
Lt 1.00 0.05 0.05 0.23 0.20 0.05
Ly 1.00 0.10 0.10 0.06 0.11 0.09
Lin 1.00 0.20 0.20 0.05 0.06 0.05
mean 0.86 0.26 0.24 0.21 0.22 0.17
pvalue 2e-99 5e-08 7e-08 3e-02 210 -

TABLE 3: A comparison of kernel functions in terms of
the percentage of vertices required to generate the optimal
solution. The statistically best percentage is in bold.

G RBF linear polynomial sigmoid
Mt 0.27 0.37 0.33 0.47
M 018 0.20 0.18 0.28
MiT 033 0.39 0.44 0.55
Mir 0.24 0.25 0.25 0.51
Mgr 0.17 0.17 0.17 0.29
M 038 0.38 0.34 0.37
Mi™ 038 0.51 0.44 0.65
ME 099 1.00 1.00 1.00

TABLE 4: The optimal weights associated with each feature
in the trained SVM models for medium and large datasets.

Dataset fgen fw fa fv fr fe
Medium —0.40 —-0.25 036 0.39 1.11 1.82
Large —1346.02 —0.40 242 250 4.39 3.68

of graph density and its optimal weight is around 1.4, which
is also less than that of our statistical measures.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

T LT LT 1,600
1,400

f w

—— fy 1,400

1,200
— fy

° f7" 1,200

1,000 fr

—ml

1,000

9
fw 6,000 f’w
—— fa —=— fa
—— Iy —— fv
—— fr 4,000 — f
—— fc —— fc
——ml ——ml

20% 60% 80% 100% 20%

40%

(b) My

60% 80% 100% 20% 40%

(c) Mz"

60% 80% 100%

2,000 1,600

1,400

1,200

1,000

fw
—s— fq
—— 3

—— f.

——ml

20% 40%

(d) mgr

60% 20%

40%

() At

60% 80% 100% 20% 40%

() L7

60% 80% 100%

Fig. 2: A comparison between different graph reduction techniques: ml, f., fr, fv, fa and f,,. The horizontal axis represents
the percentage of vertices selected by each method; and the vertical axis represents the best objective values generated by

solving the subproblem formed by the selected vertices.

5.2 Improving Existing Algorithms by Graph Reduction
5.2.1 Setup

In this section, we aim to improve the performance of exist-
ing solution methods on hard graphs using our graph reduc-
tion techniques as a preprocessing step. For our statistical
measures we remove from a given graph the vertices whose
score is less than a threshold, i.e (f. < €. or f. < €.). For
our MLPR method we remove the vertices that are predicted
to be negative (class label —1). As discussed in Section
4, we train a separate model for medium-sized and large-
sized hard graphs using the corresponding easy graphs as
training dataset. We expect the optimal solutions of easy
graphs are likely to be close to those of hard graphs in the
feature space, thus it is possible to transfer the mapping
learned from easy graphs to hard graphs.

We then use existing solution methods to solve the
reduced problem to see if our problem reduction techniques
are beneficial. We test two exact solvers — TSM [8] and
WLMC [7] as well as two heuristic methods LSCC+BMS
[54] and FastWClq [53]. We denote a solution method A with
different problem reduction techniques as A-f,., A- f. and A-
ml respectively. Although exact solvers have the optimality
guarantee, the time required to generate an optimal solution
may be very long. Thus we simply set a cutoff time (1000
seconds) for each algorithm, and use the best objective
value obtained within the cutoff time as an indication of
algorithm performance. Note that the preprocessing time
used by our problem reduction techniques is counted as
part of the cutoff time. Each algorithm is independently
run 25 times to alleviate randomness and the test used to
determine statistical significance is the same as before. We
rank the algorithms on each graph and compute the average
ranking across all the graphs as an indication of their overall
performance.

We set the parameters ¢, = 0.01 and ¢, = 0, and test two
values of €, (ie., 10 and 100) to investigate the effects of
different level of penalty has on the algorithm performance.
The other parameter setting is the same as before.

5.2.2 Results

The results for TSM, LSCC, WLMC and FastWClq are sum-
marized in Table 5, 6, 7 and 8 respectively. We can observe
that our proposed problem reduction techniques can greatly
improve the performance of existing solution methods as
a preprocessing step. The best solution quality generated
can be significantly improved especially for hard problem
instances that an existing solution method performs poorly
on. Note that the results generated by the exact solvers,
TSM and WLMC, may not be exactly the same across the
25 independent runs, because the graph loading time varies
slightly especially for large graphs. The percentage of ver-
tices removed by our problem reduction methods may also
slightly vary, as we re-generate a reduced graph instance in
each independent run and our statistical measures are based
on stochastic sampling.

Our correlation-based measure f. tends to remove about
50% of vertices from both the medium dense and large
sparse graphs when the parameter ¢, is set to 0. This
amount of problem reduction works well on most of the
medium-sized graphs, but is not enough for large sparse
graphs. In this regard, our correlation-based measure is not
well adaptive to graph density. However we show in the
supplementary material that, by simply setting €. to 0.01
the correlation-based measure f. can further reduce the size
of large graphs to about 15%, and can further improve the
performance of solution algorithms.

Our ranking-based measure f, (with €, = 0.01) is very
effective in reducing the size of large sparse graphs, but

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10
TABLE 5: The results of TSM, TSM-f,., TSM-f. and TSM-m! when used to solve the hard instances; ¥ and o, denote
the mean and standard deviation of best objective values generated in 25 independent runs within the cutoff time (1000
seconds); and p denotes the mean ratio of selected vertices. The statistically best solution quality is in bold. The last row
shows the average ranking (7) of each algorithm across all datasets.

G TSM TSM-f, (e, = 0.01) TSM-fe (e. = 0) TSM-ml (ey,, = 10) TSM-ml (e, = 100)
Y Oy Y Oy D Y Oy D Y Oy P y Oy P

Mlte 10119 0 10069 144 0.93 10286 82 0.41 10294 51 0.27 10028 182 0.49
M%e 7341 0 7479 277 1.00 8208 197 0.53 8250 142 0.55 7925 136 0.75
Mée 2407 0 2431 31 0.98 2465 4 0.53 2466 0 0.48 2461 12 0.69
Mie 8228 0 7805 231 1.00 8792 206 0.54 8898 161 0.52 8416 215 0.78
M, g € 2402 0 2445 53 0.79 2590 47 0.53 2601 42 0.49 2539 45 0.71
M, ée 34259 0 34265 0 1.00 33882 20 0.52 34253 6 0.98 34265 0 1.00
M%E 109191 4 109870 77 1.00 110080 35 0.51 109850 59 0.98 109890 64 0.99
Mge 4812 0 4678 92 1.00 4899 57 0.76 4914 67 0.78 4853 70 0.95
Mge 4762 0 5306 168 1.00 5280 208 0.60 5260 144 0.39 5212 161 0.80
L’ie 32105 7 32232 57 0.02 32000 36 0.38 31958 193 0.02 32133 130 0.04
Lée 26412 0 26890 387 0.03 26844 398 0.39 26757 378 0.06 26786 342 0.11
Lge 31228 76 31298 531 0.02 31748 318 0.39 31496 376 0.06 31650 341 0.11
Lff 27972 0 29511 184 0.02 29548 0 0.39 29492 280 0.05 29548 0 0.09
Lée 30310 0 32789 231 0.02 32731 303 0.40 32760 260 0.05 32722 311 0.11
Lée 31371 23 35544 557 0.02 32572 612 0.39 32801 523 0.04 32514 617 0.08
L%e 28232 0 30788 198 0.03 30734 533 0.38 30757 459 0.05 30827 161 0.08
Lge 48716 331 49256 579 0.02 46699 2017 0.37 49630 311 0.06 50063 188 0.10
Lge 32658 94 33055 57 0.02 32969 44 0.37 33085 0 0.05 33085 0 0.09
L’i% 25637 57 27715 302 0.02 27775 0 0.40 27726 243 0.05 27703 192 0.10
L’ﬁ 22749 206 26459 327 0.02 26190 0 0.40 26323 72 0.06 26351 37 0.12
T 4.5 2.4 19 15 1.7

TABLE 6: The results of LSCC, LSCC-f,., LSCC-f. and LSCC-ml when used to solve the hard instances; 3 and o, denote
the mean and standard deviation of best objective values generated in 25 independent runs within the cutoff time (1000
seconds); and p denotes the mean ratio of number of vertices selected. The statistically best solution quality is in bold. The
last row shows the average ranking (7) of each algorithm across all datasets.

G LSCC LSCC-f, (e, = 0.01) LSCC-f¢ (e« = 0) LSCC-ml (e, = 10) LSCC-ml (&, = 100)

Y Oy Y Oy D y Oy P y Oy D Y Oy D
Mfe 10320 5 10318 9 0.93 10320 5 0.40 10305 28 0.26 10321 0 0.48
Mée 9251 14 9252 13 1.00 9119 46 0.53 9135 63 0.54 9240 26 0.75
Mge 2466 0 2466 0 0.98 2466 1 0.53 2466 1 0.49 2466 0 0.69
Mie 10905 36 10917 33 1.00 10887 32 0.54 10883 37 0.52 10933 16 0.78
Mge 2792 0 2791 2 0.79 2781 13 0.53 2781 17 0.49 2792 0 0.70
Mge 34230 5 34228 6 1.00 33891 23 0.52 34220 13 0.98 34231 5 1.00
M%e 111070 14 111060 14 1.00 110130 42 0.51 110960 40 0.98 111060 9 0.99
Mée 5129 0 5129 0 1.00 5129 0 0.76 5129 0 0.78 5129 0 0.95
Mée 7778 72 7766 60 1.00 7789 70 0.60 7530 54 0.39 7850 87 0.80

Lte 23969 1812 30943 641 0.02 27972 1187 0.38 31570 283 0.02 31443 474 0.04
Lte 21430 1594 26900 460 0.03 26385 868 0.39 26625 620 0.06 26794 545 0.11
L 23923 3195 31386 559 0.02 31403 1187 0.39 31401 695 0.06 31393 769 0.11
Lte 23066 2006 29454 325 0.02 29345 730 0.39 29500 239 0.05 29511 183 0.09
Lte 25843 3039 32797 188 0.02 32746 282 0.40 32685 351 0.05 32814 103 0.11
L 24984 4322 35537 128 0.02 33061 847 0.39 35392 231 0.04 35077 515 0.08
Lte 24463 2320 30795 448 0.03 30602 1048 0.38 30776 454 0.05 30776 454 0.08
Lt 25531 4511 49460 561 0.02 39270 7164 0.37 48305 4371 0.06 45657 6721 0.10
LEe 24163 2875 31395 428 0.02 28120 785 0.37 31011 808 0.05 30418 747 0.09
Lt 19373 2411 27655 416 0.02 27775 0 0.40 27694 403 0.05 27642 393 0.10
Lis 21804 2121 27162 136 0.02 24824 884 0.40 26877 301 0.06 26450 419 0.12

3 3.3 1.2 2.6 2.2 14

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11
TABLE 7: The results of WLMC, WLMC-f,,, WLMC-f. and WLMC-m! when used to solve the hard instances; y and o,
denote the mean and standard deviation of best objective values generated in 25 independent runs within the cutoff time
(1000 seconds); and p denotes the mean ratio of number of vertices selected. The statistically best solution quality is in
bold. The last row shows the average ranking (7) of each algorithm across all datasets.

Lie 34356
L 32167
Lte 24991
Lts 25205

39221 5755 0.02 41562 5691 0.37 40006 5735 0.06 39276 5385 0.10
32347 50 0.02 32173 29 0.37 32167 0 0.05 32224 29 0.09
27706 343 0.02 27775 0 0.40 27697 389 0.05 27775 0 0.10
25309 162 0.02 25050 98 0.40 24647 41 0.06 25205 0 0.12

G WLMC WLMC-f; (e, = 0.01) WLMC-f. (ec = 0) WLMC-ml (eyn, = 10) WLMC-ml (e, = 100)
Y Oy Y Oy D Y Oy D Y Oy P y Oy P

Mfe 9846 0 9791 48 0.93 9819 48 0.41 9960 169 0.27 9793 32 0.48
M;e 7317 0 7182 226 1.00 8078 168 0.53 8101 185 0.54 7851 209 0.75
Mée 2360 0 2396 42 0.98 2466 1 0.53 2465 3 0.49 2454 22 0.69
M}i"‘ 7738 0 7739 221 1.00 8666 195 0.54 8808 202 0.52 8387 220 0.78
M, ge 2383 0 2452 59 0.79 2590 44 0.53 2592 44 0.49 2448 38 0.70
Mée 34265 0 34265 0 1.00 33882 25 0.52 34255 6 0.98 34265 0 1.00
M;e 109789 16 109850 49 1.00 110120 50 0.51 110020 18 0.98 110000 8 0.99
Mge 4738 0 4386 133 1.00 4737 92 0.76 4825 78 0.78 4707 97 0.95
Mée 4760 0 5214 138 1.00 5203 115 0.60 5225 146 0.39 5264 158 0.80
Lﬁe 25293 0 31807 341 0.02 26972 579 0.38 29533 720 0.02 27222 752 0.04
Lge 22332 0 26331 826 0.03 26133 1219 0.39 26253 1063 0.06 26264 1136 0.11
Lée 28044 0 31446 1065 0.02 31438 1077 0.39 30907 1381 0.06 30799 1454 0.11
Lfle 20819 0 29548 0 0.02 29453 477 0.39 29417 654 0.05 29548 0 0.09
Lge 29398 0 32659 378 0.02 32789 231 0.40 32797 188 0.05 32685 351 0.11
Lée 26557 0 34027 663 0.02 32802 631 0.39 32649 527 0.04 32716 671 0.08
L%e 24560 0 30753 462 0.03 30687 621 0.38 30757 459 0.05 30866 97 0.08

0

0

0

0

T 4.2 2.0 1.8 1.6 19

TABLE 8: The results of FastWClq, FastWClg- f,., FastWClq- f. and FastWClqg-m! when used to solve the hard instances;
and o, denote the mean and standard deviation of best objective values generated in 25 independent runs within the cutoff
time (1000 seconds); and p denotes the mean ratio of number of vertices selected. The statistically best solution quality is
in bold. The last row shows the average ranking (7) of each algorithm across all datasets.

G FastWClq FastWClg-fr (er = 0.01) FastWClg-fc (e = 0) FastWClg-ml (em = 10) FastWClg-ml (e;n = 100)
Y Ty Y Oy p Y gy p Y gy p Y Oy p
Mie 9852 40 9890 103 0.94 10108 57 0.41 10120 65 0.27 10055 62 0.49
Mie 8546 40 8516 99 1.00 8856 81 0.53 8848 109 0.55 8711 93 0.75
Mie 2400 16 2428 28 0.98 2464 5 0.53 2464 5 0.49 2462 5 0.69
Mte 9703 78 9594 85 1.00 10145 110 0.54 10104 85 0.53 9840 90 0.78
Mte 2437 72 2560 29 0.79 2679 44 0.53 2724 52 0.49 2616 59 0.70
Mte 34097 3 34102 6 1.00 33878 18 0.52 34109 15 0.98 34103 7 1.00
Mte 110420 55 110330 80 1.00 110120 27 0.51 110480 71 0.98 110420 78 0.99
Mte 4968 33 4923 31 1.00 5013 41 0.76 4990 59 0.79 4931 19 0.95
Me 5766 78 5602 144 1.00 6108 97 0.60 6319 134 0.39 5884 90 0.80

Lte 30666 373 31165 219 0.02 30164 525 0.38 30728 386 0.02 30809 231 0.04
Lte 27025 386 26665 617 0.03 27094 319 0.39 26678 538 0.06 26778 467 0.11
L 31854 244 31280 678 0.02 31868 208 0.39 31738 349 0.06 31659 426 0.11

Lte 29548 0 29548 0 0.02 29548 0 0.39 29548 0 0.05 29406 493 0.09
Lte 32165 458 32701 341 0.02 32835 0 0.40 32750 283 0.05 32798 130 0.11
L& 34790 120 35098 161 0.02 34519 247 0.39 34975 161 0.04 34951 216 0.08
Lte 30885 0 30691 602 0.03 30880 15 0.38 30638 676 0.05 30845 140 0.08

Lt 49912 1932 49348 519 0.02 49488 2696 0.37 50177 166 0.06 50342 45 0.10
LEe 30251 525 30502 514 0.02 29858 700 0.37 30432 390 0.05 30317 390 0.09
Lt 27775 0 27775 0 0.02 27649 417 0.40 27775 0 0.05 27775 0 0.10
Lis 26204 32 26624 275 0.02 25960 288 0.40 26504 169 0.06 26413 221 0.12

2.9 2.7 2.3 12 1.8

=

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

—=— MLPRyone —=— MLPRuone
—+— MLPR}arge —+— MLPR}arge
4.6
10%-6] —*— MLPRuman 1077 —e— MLPRuman
104.4
104.4
1 3 5 7 9 11 1 3 5 7 9 11
(a) TSM (b) LscC
16 —s=— MLPRyone —=— MLPRyone
10 e MLPRjarge —+— MLPRarge
—o— MLPRgman —o— MLPRgman
104.6
104A4
104.4
1 3 5 7 9 11 1 3 5 7 9 11

(c) WLMC (d) FastWClq

Fig. 3: A comparison between MLPRga11 (trained on small
graphs), MLPR,¢c (trained on large graphs) and MLPRone
(without any problem reduction) when incorporated with
the 4 algorithms to solve the 11 large hard problem instances
(L'¢). The horizontal axis represents the graph index, and
the vertical axis represents the mean of best objective values
generated (y) within the cutoff time (1000 seconds). For each
method we sort § from the 11 graphs in ascending order to
generate the plots for easier visualization.

less effective for medium-sized graphs. Even when using
a slightly larger parameter value (¢, = 0.03), our ranking-
based measure is still unable to remove any vertex from
some of the medium-sized graphs, partially because these
graphs are very dense (see the supplementary material for
detailed results). When combined with LSCC our ranking-
based measure achieves the best average ranking, due to 1)
LSCC is very effective for solving the medium-sized graphs,
thus it can find a good solution even though f, cannot
effectively reduce the problem size; and 2) LSCC is very
ineffective for solving the large-sized graphs, thus it greatly
benefits from the huge size reduction by f, for large graphs.

As expected our MLPR method is the most robust as
it takes several features into account. It achieves the best
average ranking when incorporated with TSM, WLMC and
FastWClg, and comparable results with the ranking-based
measure f, when combined with LSCC. Furthermore the
reduced problem size by MLPR is more adaptive to graph
density, in the sense that it tends to remove more vertices
from sparse graph but less from dense graph. Lastly we
observe that when using a smaller parameter value ¢,,, our
MLPR method removes more vertices from a graph.

To test the scalability of our MLPR model, we apply
the MLPR model trained on the 8 medium-sized synthetic
graphs (M'") to reduce the problem size for large real-world
graphs (L'®). However we observe that this trained model

12

tends to remove too many vertices from these large graphs.
We infer the reason is that the training instances collected
from the 8 medium graphs are biased and do not cover the
feature space well. We then solve this issue by including
18 more small graphs (|]V| < 1000) from the DIMACS
benchmark into the training set. A brief description of these
18 graphs can be found in the supplementary material.

As discussed in Section 4, we trained our MLPR model
for medium-sized dataset by solving the dual problem of
L1-SVM with RBF kernel before. However the prediction
time used by this model to remove vertices from the large
graphs is long (around 300 seconds). Thus we will instead
train the MLPR model by solving the primal problem of
linear L2-SVM to gain computational efficiency, and the
prediction time can be significantly reduced to around 2
seconds. We compare this model, termed as MLPRgnan,
against MLPR|,;ge Which is trained on the large easy graphs
L', as well as MLPR, o (Without any problem reduction),
when incorporated with the 4 solution algorithms to solve
the 11 large hard graphs L'¢. The parameter ¢, is set to 10
for both of the MLPRyan1 and MLPRy,, 6. methods.

The results are shown in Fig. 3. To generate these plots,
we sort the best objective values obtained by each algorithm
on the 11 graphs in ascending order for better visualization.
Thus the graph index in these plots may not match that of
Table 1. However the detailed results and average ranking of
each algorithm can be found in the supplementary material.
We observe that the MLPR,,.11 method significantly boosts
the performance of TSM, LSCC and WLMC; and achieves
comparable results against MLPRj,.¢e When used to solve
the 11 large hard instances. The FastWClq algorithm only
benefits slightly from our problem reduction techniques in
terms of the average ranking (listed in the supplementary
material), because it is already very effective in solving these
hard instances. It is worth noting that the LSCC algorithm is
very ineffective in solving these large instances, however
by using our MLPR methods as a preprocessing step its
performance can be significantly boosted to a level that is
competitive with FastWClq.

In the supplementary material we have also tested the
scalability of our MLPR model on other large real-world
graphs that have not been considered here. The results show
that our MLPR model trained on small and median graphs
can significantly reduce the size of large graphs, and is still
able to capture an original optimal solution (or at least a
near-optimal solution) in the reduced graph.

In practice if a training dataset is available we suggest
to use our MLPR method for problem reduction. Otherwise
our proposed statistical measures can be used for problem
reduction; specifically the correlation-based measure f. for
medium-sized graphs and the ranking-based measure f, for
large sparse graphs. Furthermore the LSCC algorithm tends
to perform well on medium-size graphs, and the FastWClq
and TSM algorithms are good candidates to use for solving
large sparse graphs. Last we suggest the reduced problem
size can be tuned by varying the parameters €, €. and €,.

5.3 Improving B&B Algorithms by Vertex Ordering
5.3.1 Setup

Decision variable ordering defines the search tree for B&B
algorithms, that has a large impact on the algorithm perfor-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

TABLE 9: The results of TSM, TSM-f,.-O, TSM-f.-O and
TSM-mi-O when used to solve the hard instances; i and o,
denote the mean and standard deviation of best objective
values generated in 25 independent runs within the cutoff
time (1000 seconds). The statistically best solution quality is
in bold. The last row shows the average ranking (¥) of each
algorithm across all datasets.

13

TABLE 10: The results of WLMC, WLMC- f,.-O, WLMC- f,.-
O and WLMC-m!-O when used to solve the hard instances;
7 and o, denote the mean and standard deviation of best
objective values generated in 25 independent runs within
the cutoff time (1000 seconds). The statistically best result is
in bold. The last row shows the average ranking (¥) of each
algorithm across all datasets.

G TSM TSM-f-O _TSM-fcO _TSM-ml-O WLMC WLMC-f,-O WIMC-f,-O WLMC-ml-O

Y oy Y oy g oy Y oy] oy Y oy] oy] oy
Mfe 10119 0 10241 73 10273 23 10254 52 Mfe 9846 0 10130 115 10244 32 10224 42
Mie 7341 0 7735 209 8428 132 8184 202 Mte 7317 0 7613 278 8350 122 8110 150
Mze 2407 0 2461 13 2465 3 2466 0 MEE 2360 0 2459 14 2466 0 2466 0
M ie 8228 0 7863 218 8705 192 8425 245 M ie 7738 0 7726 234 8607 182 8237 189
Mte 2402 0 2600 41 2703 27 2710 21 Mte 2383 0 2594 43 2698 27 2703 28
MZE 34259 0 34265 0 34238 5 34265 0 MZE 34265 0 34265 0 34251 5 34265 0
M%E 109191 4 110200 31 110280 50 110240 150 M;e 109789 16 110360 43 110370 60 110320 63
Mée 4812 0 4896 49 4965 43 4955 40 M%e 4738 0 4806 60 4923 46 4881 56
Mge 4762 0 6175 217 6396 139 6311 197 Mg® 4760 0 6082 146 6268 143 6244 180
Ltle 32105 7 32285 22 31940 590 32193 163 L'ie 25293 0 30647 721 27519 757 30290 897
L%e 26412 0 27002 241 26946 272 27051 193 L%e 22332 0 26673 675 26497 1037 26654 769
L; 31228 76 31776 267 31650 346 31631 322 L%f 28044 0 31318 808 30722 1364 31546 659
Ly 27972 0 29548 0 29548 0 29548 0 Ly 20819 0 29358 530 29443 523 29415 465
L%e 30310 0 32665 356 32685 351 32722 311 L%ﬁ 29398 0 32760 260 32601 427 32722 311
Lge 31371 23 35698 0 35698 0 35698 0 L?e 26557 0 35367 456 34927 952 34994 825
Lze 28232 0 30827 288 30866 97 30885 0 LZE 24560 0 30821 240 30866 97 30757 459
Lge 48716 331 49747 472 48745 861 48394 2022 Lge 34356 0 50289 146 47064 6664 48041 5601
Lge 32658 94 30907 1434 29334 548 30574 1336 Lge 32167 0 30270 1111 28950 0 29617 838
Ll% 25637 57 27775 0 27775 0 27775 0 Ll% 24991 0 27775 0 27775 0 27775 0
L%Pi 22749 206 27492 30 27104 590 27456 188 L’iel 25205 0 26568 713 24764 609 26049 999
I3 3.6 1.8 1.6 1.2 T 3.7 1.8 1.7 1.3

mance. In TSM and WLMC vertices are sorted by degree;
that is repeatedly removing the vertex with smallest de-
gree from the current graph. Instead, the vertex ordering
generated by our methods described in Section 5.1 can
be used as the branching order for TSM and WLMC. We
denote an algorithm B (i.e., TSM or WLMC) using different
orderings generated by our methods as B-Oy,, B-Oy, and
B-O,y respectively. Each algorithm is run 25 times on each
hard graph and the cutoff time is set to 1000 seconds. The
parameter setting is the same as Section 5.1.

5.3.2 Results

The results for TSM and WLMC are summarized in Table 9
and 10. We can observe that the vertex orderings produced
by our problem reduction techniques can significantly im-
prove the best solution quality found by TSM and WLMC.
The MLPR method consistently achieves overall the best
performance. Note that although our vertex ordering can
guide the B&B algorithms towards a better solution quickly,
it does not necessarily mean that the search tree generated
by our vertex ordering is smaller. There has been some
work that learns to minimize the size of search tree [16, 17].
However as the vertex ordering is only a by-product of our
problem reduction techniques, a further investigation along
this line is beyond the scope of this paper.

6 CONCLUSION

In this paper, we tackled large-scale combinatorial optimiza-
tion problems via problem reduction. We used the maxi-
mum weight clique problem as an example, and showed

how to heuristically remove vertices from a graph that are
not expected to be part of the optimal solution. First we
described two statistical measures computed from stochastic
sampling of feasible solutions to quantify the “quality” of
each vertex. We then used these measures to guide graph re-
duction and showed they are more useful than the features
computed directly from graph data. To take this further,
we proposed a machine learning approach named MLPR
that combines the statistical measures with graph features,
thus it enables us to better predict the vertices that belong
to the optimal solution for a given graph. We used easy
graphs for which the optimal solutions are known as the
training dataset, and showed the knowledge learned from
easy graphs is useful for reducing the problem size for a
hard graph. We evaluated our problem reduction techniques
using simulation experiments and showed they are effective
and can boost the performance of existing solution methods.

A logical extension of this work would be to test our
problem reduction techniques on other combinatorial op-
timization problems, e.g., traveling salesman problem and
graph coloring problem. Our overarching goal is to develop
a generic automated problem reduction method that simply
takes a very large mixed integer program (MIP) as input.
This can possibly be achieved by 1) transferring a given
large MIP into a binary linear program (BLP); 2) generating
sufficiently small cut-down versions of the BLP and solving
them to optimality using a MIP solver; 3) constructing a
training dataset; and 4) training a machine learning model
to reduce the size of the original BLP. The reduced BLP can
then be solved by using an existing solution method, e.g., a
MIP solver.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

ACKNOWLEDGMENTS

This work was supported by an ARC Discovery Grant
(DP180101170) from Australian Research Council.

REFERENCES

(1]

(2]

(3]

(4]

(5]

6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

E. Jélvez, N. Morales, P. Nancel-Penard, J. Peypouquet, and
P. Reyes, “Aggregation heuristic for the open-pit block scheduling
problem,” European Journal of Operational Research, vol. 249, no. 3,
pp- 1169-1177, 2016.
A. Kenny, X. Li, A. T. Ernst, and D. Thiruvady, “Towards solving
large-scale precedence constrained production scheduling prob-
lems in mining,” in Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2017, pp. 1137-1144.
C.-H. Brech, A. Ernst, and R. Kolisch, “Scheduling medical resi-
dents’ training at university hospitals,” European Journal of Opera-
tional Research, vol. 274, no. 1, pp. 253-266, 2019.
R. A. Rossi, D. F. Gleich, A. H. Gebremedhin, and M. M. A.
Patwary, “Fast maximum clique algorithms for large graphs,” in
Proceedings of the 23rd International Conference on World Wide Web.
ACM, 2014, pp. 365-366.
Q. Wu and J.-K. Hao, “A review on algorithms for maximum
clique problems,” European Journal of Operational Research, vol. 242,
no. 3, pp. 693-709, 2015.
F. V. Fomin, F. Grandoni, and D. Kratsch, “A measure & conquer
approach for the analysis of exact algorithms,” Journal of the ACM
(JACM), vol. 56, no. 5, p. 25, 2009.
H. Jiang, C.-M. Li, and F. Manya, “An exact algorithm for the
maximum weight clique problem in large graphs.” in AAAI, 2017,
pp. 830-838.
H. Jiang, C.-M. Li, Y. Liu, and F. Manya, “A two-stage maxsat
reasoning approach for the maximum weight clique problem.” in
AAAI 2018.
T. Akiba and Y. Iwata, “Branch-and-reduce exponential/fpt al-
gorithms in practice: A case study of vertex cover,” Theoretical
Computer Science, vol. 609, pp. 211-225, 2016.
S. Lamm, P. Sanders, C. Schulz, D. Strash, and R. E. Werneck,
“Finding near-optimal independent sets at scale,” Journal of Heuris-
tics, vol. 23, no. 4, pp. 207-229, 2017.
R. Ruiz-Torrubiano and A. Sudrez, “Hybrid approaches and di-
mensijonality reduction for portfolio selection with cardinality
constraints,” IEEE Computational Intelligence Magazine, vol. 5, no. 2,
pp. 92-107, 2010.
R. Liu, A. Agrawal, W.-k. Liao, and A. Choudhary, “Search space
preprocessing in solving complex optimization problems,” in 2014
IEEE International Conference on Big Data (Big Data). 1EEE, 2014,
. 1-5.
%P A. Tayali and S. Tolun, “Dimension reduction in mean-variance
portfolio optimization,” Expert Systems with Applications, vol. 92,
pp- 161-169, 2018.
A. Lodi and G. Zarpellon, “On learning and branching: a survey,”
Top, vol. 25, no. 2, pp. 207-236, 2017.
H. He, H. Daume III, and J. M. Eisner, “Learning to search in
branch and bound algorithms,” in Advances in neural information
processing systems, 2014, pp. 3293-3301.
E. B. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina,
“Learning to branch in mixed integer programming,” in Thirtieth
AAAI Conference on Artificial Intelligence, 2016.
M.-F. Balcan, T. Dick, T. Sandholm, and E. Vitercik, “Learning
to branch,” in Proceedings of the 35th International Conference on
Machine Learning, vol. 80. PMLR, 10-15 Jul 2018, pp. 344-353.
J. Boyan and A. W. Moore, “Learning evaluation functions to
improve optimization by local search,” Journal of Machine Learning
Research, vol. 1, no. Nov, pp. 77-112, 2000.
O. V. Shylo and H. Shams, “Boosting binary optimization via
binary classification: A case study of job shop scheduling,” arXiv
preprint arXiv:1808.10813, 2018.
D. Martins, G. M. Vianna, I. Rosseti, S. L. Martins, and A. Plastino,
“Making a state-of-the-art heuristic faster with data mining,”
Annals of Operations Research, vol. 263, no. 1-2, pp. 141-162, 2018.
W. Zhang and T. G. Dietterich, “Solving combinatorial optimiza-
tion tasks by reinforcement learning: A general methodology
applied to resource-constrained scheduling,” Journal of Artificial
Intelligence Reseach, vol. 1, pp. 1-38, 2000.
O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in
Advances in Neural Information Processing Systems, 2015, pp. 2692—
2700.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

(43]

[44]

14

E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Advances
in Neural Information Processing Systems, 2017, pp. 6348-6358.

M. Nazari, A. Oroojlooy, L. Snyder, and M. Takéc, “Reinforcement
learning for solving the vehicle routing problem,” in Advances in
Neural Information Processing Systems, 2018, pp. 9861-9871.

Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with
graph convolutional networks and guided tree search,” in Ad-
vances in Neural Information Processing Systems, 2018, pp. 537-546.
Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for com-
binatorial optimization: a methodological tour d’horizon,” arXiv
preprint arXiv:1811.06128, 2018.

G. Di Liberto, S. Kadioglu, K. Leo, and Y. Malitsky, “DASH:
Dynamic approach for switching heuristics,” European Journal of
Operational Research, vol. 248, no. 3, pp. 943-953, 2016.

E. B. Khalil, B. Dilkina, G. L. Nemhauser, S. Ahmed, and Y. Shao,
“Learning to run heuristics in tree search,” in IJCAI, 2017, pp. 659—
666.

E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa,
E. Ozcan, and R. Qu, “Hyper-heuristics: A survey of the state of
the art,” Journal of the Operational Research Society, vol. 64, no. 12,
pp. 1695-1724, 2013.

J. Branke, S. Nguyen, C. W. Pickardt, and M. Zhang, “Automated
design of production scheduling heuristics: A review,” IEEE Trans-
actions on Evolutionary Computation, vol. 20, no. 1, pp. 110-124,
2016.

M. Fischetti and M. Fraccaro, “Machine learning meets mathe-
matical optimization to predict the optimal production of offshore
wind parks,” Computers & Operations Research, vol. 106, pp. 289 —
297, 2019.

E. K. Burke, M. R. Hyde, G. Kendall, and J. Woodward, “Automat-
ing the packing heuristic design process with genetic program-
ming,” Evolutionary Computation, vol. 20, no. 1, pp. 63-89, 2012.

S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “A computa-
tional study of representations in genetic programming to evolve
dispatching rules for the job shop scheduling problem,” IEEE
Transactions on Evolutionary Computation, vol. 17, no. 5, pp. 621-
639, 2013.

M. Lombardi and M. Milano, “Boosting combinatorial problem
modeling with machine learning,” in Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence. AAAI Press, 2018,
pp. 5472-5478.

K. A. Smith-Miles, “Cross-disciplinary perspectives on meta-
learning for algorithm selection,” ACM Computing Surveys (CSUR),
vol. 41, no. 1, p. 6, 2009.

B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky,
A. Fréchette, H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney,
and J. Vanschoren, “Aslib: A benchmark library for algorithm
selection,” Artificial Intelligence, vol. 237, pp. 41 - 58, 2016.

A. Kenny, X. Li, and A. T. Ernst, “A merge search algorithm
and its application to the constrained pit problem in mining,” in
Proceedings of the Genetic and Evolutionary Computation Conference.
ACM, 2018, pp. 316-323.

C. Blum, P. Pinacho, M. Lépez-Ibéfiez, and J. A. Lozano, “Con-
struct, merge, solve & adapt a new general algorithm for combi-
natorial optimization,” Computers & Operations Research, vol. 68,
pp. 75-88, 2016.

M. Bateni, H. Esfandiari, and V. Mirrokni, “Optimal distributed
submodular optimization via sketching,” in Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. ACM, 2018, pp. 1138-1147.

E. Lindgren, S. Wu, and A. G. Dimakis, “Leveraging sparsity for
efficient submodular data summarization,” in Advances in Neural
Information Processing Systems, 2016, pp. 3414-3422.

M. Dorigo and L. M. Gambardella, “Ant colony system: a cooper-
ative learning approach to the traveling salesman problem,” IEEE
Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 53-66,
1997.

J. S. De Bonet, C. L. Isbell Jr, and P. A. Viola, “MIMIC: Finding
optima by estimating probability densities,” in Advances in Neural
Information Processing Systems, 1997, pp. 424-430.

G. R. Harik, E. G. Lobo, and D. E. Goldberg, “The compact genetic
algorithm,” IEEE Transactions on Evolutionary Computation, vol. 3,
no. 4, pp. 287-297, 1999.

F. Mascia, E. Cilia, M. Brunato, and A. Passerini, “Predicting struc-
tural and functional sites in proteins by searching for maximum-
weight cliques.” in AAAI 2010.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

[45] W. Brendel and S. Todorovic, “Segmentation as maximum-weight
independent set,” in Advances in neural information processing sys-
tems, 2010, pp. 307-315.
W. Brendel, M. Amer, and S. Todorovic, “Multiobject tracking as
maximum weight independent set,” in Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on. 1EEE, 2011, pp. 1273—
1280.
S. Butenko and W. E. Wilhelm, “Clique-detection models in
computational biochemistry and genomics,” European Journal of
Operational Research, vol. 173, no. 1, pp. 1-17, 2006.
Z.Fang, C.-M. Li, and K. Xu, “An exact algorithm based on maxsat
reasoning for the maximum weight clique problem,” Journal of
Artificial Intelligence Research, vol. 55, pp. 799-833, 2016.
[49] C.-M. Li, Y. Liu, H. Jiang, F. Manya, and Y. Li, “A new upper
bound for the maximum weight clique problem,” European Journal
of Operational Research, vol. 270, no. 1, pp. 66-77, 2018.
E. Hebrard and G. Katsirelos, “Conflict directed clause learning
for the maximum weighted clique problem,” in 37th International
Joint Conference on Artificial Intelligence (IJCAI 2018), 2018, pp. 1316—
1323.
W. Pullan, “Approximating the maximum vertex/edge weighted
clique using local search,” Journal of Heuristics, vol. 14, no. 2, pp.
117-134, Apr 2008.
Q. Wy, J.-K. Hao, and F. Glover, “Multi-neighborhood tabu search
for the maximum weight clique problem,” Annals of Operations
Research, vol. 196, no. 1, pp. 611-634, 2012.
S. Cai and J. Lin, “Fast solving maximum weight clique problem
in massive graphs.” in IJCAI, 2016, pp. 568-574.
Y. Wang, S. Cai, and M. Yin, “Two efficient local search algorithms
for maximum weight clique problem.” in AAAI, 2016, pp. 805-811.
Y. Zhou, J.-K. Hao, and A. Goéffon, “Push: A generalized operator
for the maximum vertex weight clique problem,” European Journal
of Operational Research, vol. 257, no. 1, pp. 41-54, 2017.
Y. Fan, N. Li, C. Li, Z. Ma, L. J. Latecki, and K. Su, “Restart and
random walk in local search for maximum vertex weight cliques
with evaluations in clustering aggregation,” in Proceedings of the
26th International Joint Conference on Artificial Intelligence. ~AAAI
Press, 2017, pp. 622-630.
B. Nogueira and R. G. Pinheiro, “A CPU-GPU local search heuris-
tic for the maximum weight clique problem on massive graphs,”
Computers & Operations Research, vol. 90, pp. 232-248, 2018.
B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm
for optimal margin classifiers,” in Proceedings of the Fifth Annual
Workshop on Computational Learning Theory. ACM, 1992, pp. 144—
152.
C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273-297, 1995.
R.-E. Fan, P-H. Chen, and C.-]. Lin, “Working set selection using
second order information for training support vector machines,”
Journal of Machine Learning Research, vol. 6, no. Dec, pp. 1889-1918,
2005.
C.-C. Chang and C.-]. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1-27:27, 2011.
C.-J. Lin, R. C. Weng, and S. S. Keerthi, “Trust region newton
method for logistic regression,” Journal of Machine Learning Re-
search, vol. 9, no. Jun, pp. 627-650, 2008.
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-]. Lin,
“LIBLINEAR: A library for large linear classification,” Journal of
machine learning research, vol. 9, no. Aug, pp. 1871-1874, 2008.
D. S. Johnson and M. A. Trick, Cliques, coloring, and satisfiabil-
ity: second DIMACS implementation challenge, October 11-13, 1993.
American Mathematical Society, 1996, vol. 26.
K. Amunts, C. Lepage, L. Borgeat, H. Mohlberg, T. Dickscheid,
M.-E. Rousseau, S. Bludau, P-L. Bazin, L. B. Lewis, A.-M. Oros-
Peusquens et al.,, “Bigbrain: an ultrahigh-resolution 3d human
brain model,” Science, vol. 340, no. 6139, pp. 1472-1475, 2013.
R. Rossi and N. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.
[67] D. J. Sheskin, Handbook of parametric and nonparametric statistical
procedures. CRC Press, 2003.

[46]

[47]

(48]

(50]

[51]

[52]

(53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

15

Yuan Sun received his PhD degree in optimi-
sation and machine learning from The Univer-
sity of Melbourne, Australia, in 2018; and his
BSc degree in theoretical and applied mechan-
ics from Peking University, China, in 2013. He is
currently a Postdoctoral research fellow at RMIT
University, working on an ARC (Australian Re-
search Council) Discovery Project, using hybrid
methods (a combination of traditional and ma-
chine learning techniques) to solve large-scale
optimization problems. His research interests lie
in the intersection between machine learning and optimisation.

Xiaodong Li (M'03-SM’'07) received his B.Sc.
degree from Xidian University, Xi’an, China, and
Ph.D. degree in information science from Uni-
versity of Otago, Dunedin, New Zealand, re-
spectively. He is a Professor with the School of
Science (Computer Science and Software Engi-
neering), RMIT University, Melbourne, Australia.
His research interests include machine learn-
ing, evolutionary computation, neural networks,
data analytics, multiobjective optimization, multi-
modal optimization, and swarm intelligence. He
serves as an Associate Editor of the IEEE Transactions on Evolutionary
Computation, Swarm Intelligence (Springer), and International Journal
of Swarm Intelligence Research. He is a founding member of IEEE CIS
Task Force on Swarm Intelligence, a vice-chair of IEEE Task Force on
Multi-modal Optimization, and a former chair of IEEE CIS Task Force
on Large Scale Global Optimization. He is the recipient of 2013 ACM
SIGEVO Impact Award and 2017 IEEE CIS “IEEE Transactions on
Evolutionary Computation Outstanding Paper Award”.

Andreas Ernst completed his PhD in network
optimisation at the The University of Western
Australia in 1995. He spent 20 years working
at CSIRO Australia on research into optimisa-
tion methods and applying operations research
to a wide variety of industry problems, rang-
ing from mining supply chains to rostering ant
recreational vehicle scheduling. Andreas Ernst
has been a Professor of Operations Research in
the School of Mathematical Science at Monash
University since 1995 and is the Director of MAX-
IMA, the Monash Academy for Interdisciplinary Mathematical Applica-
tions. He has published extensively on hub location problems, and on
matheuristics that combine meta-heuristic optimisation methods with
integer programming techniques. His current research interests also
include decomposition methods and high performance parallel combi-
natorial optimisation algorithms.

