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Optimization Problems
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Abstract—Interactions between decision variables typically
make an optimization problem challenging for an evolutionary
algorithm (EA) to solve. Exploratory landscape analysis (ELA)
techniques can be used to quantify the level of variable interac-
tions in an optimization problem. However, many studies using
ELA techniques to investigate interactions have been limited to
combinatorial problems, with very few studies focused on contin-
uous variables. In this paper, we propose a novel ELA measure to
quantify the level of variable interactions in continuous optimiza-
tion problems. We evaluated the efficacy of this measure using a
suite of benchmark problems, consisting of 24 multidimensional
continuous optimization functions with differing levels of vari-
able interactions. Significantly, the results reveal that our measure
is robust and can accurately identify variable interactions. We
show that the solution quality found by an EA is correlated with
the level of variable interaction in a given problem. Finally, we
present the results from simulation experiments illustrating that
when our measure is embedded into an algorithm design frame-
work, the enhanced algorithm achieves equal or better results on
the benchmark functions.

Index Terms—Continuous optimization problem,
exploratory landscape analysis (ELA), maximal information
coefficient (MIC), variable interaction.

I. INTRODUCTION

IN A CONTINUOUS optimization problem, the objective
is to improve a measure of performance or cost—the

output variable—by adjusting the values of the input vari-
ables, when both input and output variables are real numbers.
Such problems are ubiquitous in the real world, for example,
engineering control problems; maximizing annual revenue; or
building a parameterized model of a physical phenomenon.
As the dimensionality of a continuous optimization prob-
lem increases, solving the problem can be very challenging,
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especially when other well-known problem characteristics are
considered.

There is abundant evidence suggesting that the interaction
between decision variables makes an optimization problem dif-
ficult for an evolutionary algorithm (EA) to solve (see [1]–[3]
for representative papers on this topic). In a continuous opti-
mization problem, two decision variables interact if they
cannot be optimized independently when attempting to find the
optimal solution (see Section II-A1 for a formal definition).
However, in many practical applications the level of variable
interaction is usually unknown, which raises the following
research questions.

1) What is the best way to identify the pairwise interaction
between decision variables in a continuous optimization
problem?

2) How can the level of variable interactions in a continu-
ous optimization problem be measured?

3) Can the level of variable interactions be used to guide
the search in continuous optimization problems?

Exploratory landscape analysis (ELA) [4]–[6] is a technique
that can be used to explore the fitness landscape [7] of an opti-
mization problem, capturing certain characteristics (e.g., the
level of variable interactions) of the problem. Once character-
istics are identified, they can be used to predict the problem
difficulty [8], [9] or to select an appropriate algorithm to use
when solving the optimization problem [10]–[12]. A summary
of the well-known ELA measures for continuous optimization
problems can be found in [10] and [12]. However, despite
many recent efforts, there is a lack of research quantifying
the level of interactions between continuous variables and the
effects such interactions have on problem difficulty.

There are a number of ELA measures quantifying variable
interaction in combinatorial optimization problems. Epistasis
variance [13] and epistasis correlation [14] measure the inter-
action between binary variables by investigating the linear
approximation model of the fitness function. However, they
have been criticized for only measuring the absence of epista-
sis [15], [16]. In addition, they do not identify the individual
decision variables clearly. Bit-wise epistasis [17] is a more
comprehensive technique, investigating the independence of
each decision variable. Unfortunately, this technique can only
identify independent decision variables, rather than identifying
pair-wise interactions between decision variables.

A recently proposed measure, entropic epistasis (EE) [18],
identifies interaction between decision variables based on the
concept of “mutual information.” However, the calculation of
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Fig. 1. IM: “1” means “interacting” and “0” means “independent.” A “-”
on the diagonal entry indicates that it is meaningless to measure the level of
interaction between one decision variable and itself.

mutual information is computationally expensive, especially
when adapted for continuous optimization problems. The prob-
lem of the computational complexity has been solved to some
extent via a recently proposed statistical coefficient—the max-
imal information coefficient (MIC) [19]. Importantly, the MIC
can capture functional relationships between two variables.

In this paper, we propose a novel ELA measure, which
we call maximum EE (MEE), based on the MIC. The MEE
measure can be used to quantify the level of variable interac-
tions in a continuous optimization problem. The MEE measure
identifies the interaction matrix (IM) of decision variables
in a continuous optimization problem. Each entry in the IM
describes the corresponding pairwise interaction between the
decision variables, as shown in Fig. 1, where “1” means “inter-
acting” and “0” means “independent.” A “-” on the diagonal
entry indicates that it is meaningless to measure the level
of interaction between one decision variable and itself. MEE
identifies interactions between decision variables xi and xj by
calculating the MIC between xj and the partial derivative of
the objective function with respect to xi (see Section II-C
and/or [19], [20] for the implementation of MIC). The level
of variable interactions in the continuous optimization prob-
lem is subsequently approximated using three indices derived
from the IM.

We evaluate the efficacy of our MEE measure using a suite
of 24 benchmark continuous optimization functions with dif-
ferent level of variable interactions. The experimental results
show that MEE can identify the IM and accurately quantify
the level of variable interactions. We then show that there is
a correlation between the MEE level and the solution quality
found by an EA. The rationale behind this particular analysis
exercise was based on the hypothesis that the level of variable
interaction is a factor that makes a continuous optimization
problem challenging for some of the EAs to solve [1]–[3].

In the final set of simulation experiments, we investigate
whether the MEE measure can be used to effectively guide
the search for a (near) optimal solution to a given problem.
The algorithm design framework, proposed in [21], employs
the Pearson correlation coefficient to quantify the level of vari-
able interactions in an optimization problem. Based on that,
appropriate operator(s) is(are) selected to guide the search.
We observe that by using MEE, instead of the Pearson corre-
lation coefficient to quantify the level of variable interactions,
equal or better results can be achieved when solving the 24
benchmark problems.

The remainder of this paper is organized as follows.
Section II summarizes the main problem characteristics,
related ELA measures, methods to identify variable interac-
tions, and describes the MIC in detail. Section III describes

the proposed MEE measure in detail. Section IV describes
experiments to evaluate the proposed MEE measure. Section V
presents and analyzes the experimental results. Section VI
shows how the MEE measure can be embedded within
a framework to design efficient optimization algorithms.
Section VII concludes this paper and outlines future directions.

II. RELATED WORK

A. Problem Characteristics and Related ELA Measures

This section describes the main problem characteristics
believed to contribute to difficulty of an optimization prob-
lem. We also briefly describe the relevant ELA measures that
can be used to extract the problem characteristics from an
optimization problem.

In a recent survey paper, a detailed analysis of prob-
lem characteristics (e.g., separability, modality, basins of
attraction, ruggedness, smoothness, and neutrality) related to
problem difficulty in continuous optimization problems was
presented [12]. Due to space constraints (page limit), we limit
our discussion to separability and modality in this paper. In
related work, we have attempted to map ELA measures used to
capture the problem characteristics [29]. However, other ELA
measures such as fitness distance correlation [8] and disper-
sion metric [30] should be examined to paint a more coherent
and complete picture.

1) Separability: In an optimization problem, separability
refers to degree of decision variable interaction. It is important
to note, that the level of interaction between given deci-
sion variables may be different. Take the following objective
function as an example:

f (�x) = (x1 − x2)
2 + (x2 − x3)

2 + x2
4, �x ∈ [−1, 1]4. (1)

Both {x1, x2} and {x1, x3} interact with each other. However,
x1 and x2 interact directly; x1 and x3 are linked by x2. The
former is called direct interaction and the latter is called indi-
rect interaction. The formal definitions of direct interaction
and indirect interaction are described as follows [31].

Definition 1: Let f : R
d → R be a differentiable function,

where d is the number of decision variables. Decision variables
xi and xj interact directly if a candidate solution �x∗ exists,
such that

∂2f (�x)
∂xi∂xj

∣
∣
∣�x∗
�= 0 (2)

denoted by xi ↔ xj. Decision variables xi and xj interact
indirectly if for all candidate solutions

∂2f (�x)
∂xi∂xj

= 0 (3)

and a set of decision variables {xk1, . . . , xkt} ⊂ �x exists, such
that xi ↔ xk1 ↔ · · · ↔ xkt ↔ xj. Decision variables xi and
xj are independent if for all candidate solutions, (3) holds and
does not exist a set of decision variables {xk1, . . . , xkt} ⊂ �x,
such that xi ↔ xk1 ↔ · · · ↔ xkt ↔ xj.

Definition 1 describes the direct interaction and indirect
interaction based on the partial derivative of a differentiable
function. However, if a function is not differentiable, the partial



SUN et al.: QUANTIFYING VARIABLE INTERACTIONS IN CONTINUOUS OPTIMIZATION PROBLEMS 251

TABLE I
CLASSIFICATION AND BRIEF DESCRIPTION OF SELECTED METHODS THAT CAN BE USED TO IDENTIFY VARIABLE INTERACTIONS. NOTE THAT

THE SUMMARY HERE IS BY NO MEANS EXHAUSTIVE/COMPLETE. WE INTRODUCE TWO METHODS IN EACH CATEGORY

TO HELP READERS BETTER UNDERSTAND THE DIFFERENCES BETWEEN EACH CATEGORY

derivative may not exist. In this case, the partial subderiva-
tive [32], [33] can be used as a substitute for the partial
derivative, which will be detailed in Section III.

Typical ELA measures quantifying the level of variable
interactions in an optimization problem include epistasis vari-
ance [13], epistasis correlation [14], bit-wise epistasis [17],
EE [18], sign epistasis [34], auto-correlation function [35],
and meta-model [5]. In this section, we only describe EE and
meta-model in detail, as they will be used for comparison in
the numerical experiments.

The EE E(V) of a nonempty decision variable subset V is
defined as follows:

E(V) = I(XV , Y)−∑

v∈V I(Xv, Y)

I(XV , Y)
(4)

where X denotes the decision variable(s), Y denotes the objec-
tive function value, v is an individual decision variable in
the subset V , and I(X, Y) is the mutual information between
X and Y. It is important to note that EE was originally pro-
posed for combinatorial optimization problem. In this paper,
the k-d partitioning is used to estimate the entropy for mul-
tidimensional continuous variables [36]. The computational
complexity of EE grows exponentially with the dimensionality
d, as the sample size used to estimate d-dimensional entropy
should be greater than 2d [36].

The meta-model method builds a linear or quadratic regres-
sion model based on n samples {(�xi, yi), 1 ≤ i ≤ n}. The
adjusted coefficient of determination (R̄2) is employed as an
indicator for model accuracy, which is defined as

R̄2 = 1− (n− 1)
∑n

i=1

(

ŷi − ȳ
)2

(n− p− 1)
∑n

i=1(yi − ȳ)2
(5)

where ŷi is the corresponding estimation made by the regres-
sion model: ŷi = f (�xi); ȳ is the mean of yi; p is the
degree of the polynomial regression model (linear: p = 1,
quadratic: p = 2). Green [37] suggested that the sample size
n should be greater than 50 + 8d, where d is the number of
variables in �xi.

2) Modality: Modality refers to global or local optima in
an optimization problem. Without loss of generality, we only

consider minimization problems in this paper. The definitions
of global and local optima are described as follows [12].

Definition 2: In an objective function f : R
d → R, a can-

didate solution �xo is a global optimum if for all �x ∈ R
d,

f (�xo) ≤ f (�x). A candidate solution �xl is a local optimum if
there exists a δ > 0 such that for all x ∈ B(�xl, δ), f (�xl) ≤ f (�x),
where B(�xl, δ) is the ball of center �xl and radius δ (excluding
�xl); If f (�xl) < f (�x), for all x ∈ B(�xl, δ), �xl becomes a strict
local optimum.

An optimization problem is unimodal if it only has one
optimum, and is multimodal if it has more than one opti-
mum. Several landscape features related to modality may
influence the search difficulty, e.g., the number of local optima,
the size of the optimum attraction basin, the average short-
est path between local optima, ruggedness, smoothness, and
neutrality [12], [38]–[41]. Representative examples of ELA
measures used to quantify modality include the information
content of fitness sequences [11], local optima network [38],
expected number of local optima [42], and the funnel structure
detection [43].

B. Methods Identifying Variable Interaction

A large number of methods have been proposed to iden-
tify variable interactions in different domains (e.g., large scale
global optimization, evolutionary computation research). In
this section, we classify these methods into four categories
and discuss each category in detail.

Yu et al. [44] classified the methods identifying variable
interactions into three categories: 1) perturbation; 2) interac-
tion adaptation; and 3) model building. Omidvar et al. [27]
added a fourth category, based in “random grouping” [45],
referred to as a random method. We argue that this method
should not be regarded as a variable interaction identifying
method as it assigns decision variables into subgroups ran-
domly. Consequently, we introduce a new category based on
statistical measures, which we call “statistical methods.” A
summary and brief description of the selected methods identi-
fying variable interactions are presented in Table I. Note that
the review in Table I is by no means complete. We select two
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methods in each category in order to help the readers better
understand the differences between each category.

Statistical methods identify variable interactions by calcu-
lating statistical measures based on the “promising” candidate
solutions. For example, CBAVP [22] calculates the Pearson
correlation coefficient between two decision variables based
on the promising candidate solutions of a population. If the
coefficient is greater than a given threshold, the two decision
variables are classified as interacting with each other. However,
the Pearson correlation coefficient can only capture linear rela-
tionship between two decision variables. EE [18] identifies
variable interactions by investigating the mutual information
between decision variables. The MEE measure proposed in
this paper is based on the statistical coefficient MIC, therefore
it falls into the newly proposed category.

Perturbation methods identify variable interactions by
adding a small perturbation to the decision variable and
detecting the changes in the objective function. Representative
examples include differential grouping (DG) [27] and linkage
identification by nonlinearity detection [28]. These methods
are sensitive to the computational errors and noises in the sys-
tem. Smooth landscapes pose additional challenges for these
methods; the addition of a perturbation to the decision variable
may not result in significant changes in the objective functions
and thus may be difficult to detect.

Model building methods generate a probabilistic model as
part of the evolutionary process. For example, the class of
estimation of distribution algorithms (EDAs) [25] builds a
probabilistic model based on the promising candidate solutions
and updates the model during each generation. The candidate
solutions for the next generation are sampled from the cur-
rent probabilistic model. The covariance matrix adaptation—
evolutionary strategy (CMA-ES) [26] evolves the mean and
covariance matrix of the promising candidate solutions. The
population for the next generation is subsequently generated
from the mean and covariance matrix.

Interaction adaptation methods identify variable interactions
in the evolutionary process. For example, The linkage learn-
ing genetic algorithm (LLGA) [24] uses the linkage skew and
linkage shift mechanisms to evolve the IM of the decision
variables. The aim of the two mechanisms is to place the
interacting decision variables closer in the chromosome. The
chromosome with closer interacting decision variables has a
higher survival rate under recombination.

C. Maximal Information Coefficient

Typical measures of correlation between two variables, such
as the Pearson correlation coefficient, capture only linear rela-
tionships. In contrast, it is possible to measure statistical
dependence between two variables, without assuming the rela-
tionship is linear, using the information-theoretic mutual infor-
mation [46]. The mutual information between two continuous
random variables X and Y is defined as

MI(X, Y) =
∫

x∈X

∫

y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)

(6)

where p(x) and p(y) are the marginal PDFs of variables
X and Y , and p(x, y) is the joint PDF of X and Y . Mutual
information has been used, for example, to detect phase tran-
sitions in a variety of systems, including socio-economic
systems [47].

Estimating mutual information accurately from limited data
is a difficult problem, especially for continuous variables [48]
(see [49] for a review of methods). Consequently, the MIC,
was recently introduced to address this problem [19]. MIC is
part of the maximal information-based nonparametric explo-
ration suite, which uses “bins” as a means to apply mutual
information on continuous random variables, thus capturing a
broad range of associations both functional and not. In this
paper, a function relationship means a distribution (X, Y) in
which Y is a function (or a superposition of several func-
tions) of X, potentially with independent noise added. In the
continuous optimization domain, most of the optimization
problems investigated are functions. Therefore, only functional
relationships are considered in this paper.

MIC computes the mutual information between two vari-
ables at a variety of scales and finds the largest possible mutual
information at any scale. Let D denote a set of ordered pairs,
{(xi, yi), i = 1, . . . , n}, G denote a m × n grid covering D.
That means dimensions x and y are partitioned into m and n
intervals, respectively. The PDF of a grid cell is proportional
to the number of data points inside that cell. The characteris-
tic matrix M(D)m,n represents the highest normalized mutual
information of D with the m×n partition, which is defined as

M(D)m,n = max(MI)

log min (m, n)
(7)

where max(MI) is the maximum mutual information of D by
all possible m × n partitions. The MIC of a set D is then
defined as

MIC(D) = max
0<mn<B(N)

{

M(D)m,n
}

(8)

where N is the sample size, and the function B(N) = N0.6 was
heuristically determined by Reshef et al. [19]. It represents
the maximal value in the characteristic matrix M(D) subject
to 0 < mn < B(N).

It should be noted that the MIC tends to 1 for functional
relationships with probability approaching 1 as the sample
size grows, and converges to 0 for statistically independent
variables [19].

III. MEASURING VARIABLE INTERACTION USING

MAXIMAL INFORMATION COEFFICIENT

In this section, we propose a novel ELA measure, which
we call MEE, to quantify the level of variable interactions in
a continuous optimization problem.

Lemma 1: Let f : R
d → R be a differentiable function.

If (∂f /∂xi) and xj have a functional relationship, xi and xj

interact directly. Otherwise, xi and xj interact indirectly or are
independent.

Proof: Without loss of generality, we assume that

∂f

∂xi
= g(�xt) (9)
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where �xt ⊂ �x, g(�xt) is a function of �xt. If (∂f /∂xi) is a function
of xj, then xj ∈ �xt. By taking the derivative with respect to xj,
we can obtain

∂2f

∂xi∂xj
= ∂g(�xt)

∂xj
�= 0. (10)

According to Definition 1, xi and xj interact directly. On the
other hand, if (∂f /∂xi) is not a function of xj, then xj /∈ �xt. By
taking the derivative with respect to xj, we can obtain

∂2f

∂xi∂xj
= ∂g(�xt)

∂xj
= 0. (11)

According to Definition 1, xi and xj interact indirectly or are
independent.

Lemma 2: Two variables X and Y have a functional rela-
tionship, if limn→∞MIC(X, Y) = 1; two variables X and Y
are independent, if limn→∞MIC(X, Y) = 0, where n is the
sample size, MIC(X, Y) is the MIC of X and Y [19].

Proposition 1: Let f : R
d → R be a differentiable function.

If limn→∞MIC((∂f /∂xi), xj) = 1, xi and xj interact directly;
if limn→∞MIC((∂f /∂xi), xj) = 0, xi and xj interact indirectly
or are independent.

Proof: Refer to Lemmas 1 and 2.
Proposition 1 shows a straightforward way to identify the

direct interaction between decision variable pairs in a differ-
entiable function. If the MIC between ∂f /∂xi and xj is greater
than a given threshold, then xi and xj can be regarded as
directly interacting with each other. However, in a nondiffer-
entiable function, the partial derivative (∂f /∂xi) may not exist.
Therefore, Proposition 1 cannot be applied directly to identify
variable interactions in a nondifferentiable function. In this
case, the partial subderivative (∂̂f /∂xi) [32] can be used as a
replacement for the partial derivative (∂f /∂xi).

The partial subderivative (∂̂f /∂xi) is defined as follows:

∂̂f

∂xi
=

{

v
∣
∣
∣ lim inf

δxi→0

f (xi + δxi)− f (xi)− v · δxi

|δxi| ≥ 0

}

. (12)

The lim inf denotes the lower limits, defined as

lim inf
x→x̄

ϕ(x) = lim
δ→0

(

inf
x∈B(x̄,δ)

ϕ(x)

)

(13)

where B(x̄, δ) is a ball of center x̄ and radius δ (excluding x̄),
and ϕ is a function. Each v ∈ ∂̂f /∂xi is a first-order partial
subderivative of f with respect to xi.

In this paper, an optimization problem is regarded as
a “black-box” where partial (sub)derivative information is
not known. Therefore, we approximate this value using the
expression

∂f

∂xi
or

∂̂f

∂xi
≈ f (xi + δxi)− f (xi)

δxi
(14)

where δxi is a small number. In this paper, we use a default
value of δxi = 10−6. It is important to note that the estima-
tion of partial (sub)derivatives consumes additional function
evaluations, which will be analyzed in the end of this section.

The direct interaction between decision variables can be
identified by Proposition 1. The question then, is: “How
to identify indirect interaction between decision variables?”

Algorithm 1 MEE: Identifying Direct Interaction

Require: f , d, �ub, �lb, n, α, β, δx
1: for i, j = 1 to d and i �= j do
2: IM(i, j)← 0 // Initialize the interaction matrix IM
3: end for
4: for i = 1 to d do
5: for j = i+ 1 to d do
6: �x0 ← ( �ub− �lb)rand(d, 1)+ �lb
7: �xj← ( �ub(j)− �lb(j)

)

rand(1, n)+ �lb(j) // Randomly generate
n values from dimension xj.

8: for k = 1 to n do
9: �x← �x0

10: �x(j)← �xj(k)
11: y1 ← f (�x)
12: �x(i)← �x(i)+ δx
13: y2 ← f (�x)
14: �de(k)← y2−y1

δx
15: end for
16: ave_de← mean( �de)
17: for k = 1 to n do
18: if |( �de(i)− ave_de)| < β then
19: �de(i)← ave_de
20: end if
21: end for
22: if MIC( �de, �xj) > α then
23: IM(i, j)← 1, IM(j, i)← 1
24: end if
25: end for
26: end for
27: return IM as IMd // The interaction matrix only with direct

interaction.

According to Definition 1, if there is not a direct interaction
between xi and xj, but we can find a set of interacting deci-
sion variables to link them together, then xi and xj are regarded
as indirectly interacting with each other. Inspired by this, we
propose a method to comprehensively capture both direct and
indirect interactions between decision variables.

The proposed algorithm consists of two stages. The first
stage is to identify direct interaction between decision vari-
ables (Algorithm 1), and the second stage is to identify indirect
interaction between decision variables.

In Algorithm 1, the inputs are: f is the objective function, d
is the dimensionality, �ub and �lb are the upper and lower bounds
of the search space, n is the sample size, α is the threshold
to identify direct interaction between pairwise decision vari-
ables, β is employed to remove the computational errors in
the system, and δx is used to calculate the partial derivatives.

Algorithm 1 begins by initializing the IM to 0. The
interaction matrix is a d×d symmetric matrix, which contains
the information of all pairwise interactions between decision
variables. IM(i, j) = 1 means decision variables xi and xj inter-
act with each other; while IM(i, j) = 0 means xi and xj are
independent.

For each pair of decision variables (xi, xj), 1 ≤ i < j ≤ d,
the direct interaction is identified as follows. It begins by ran-
domly generating a candidate solution �x0 and an array of n
elements �xj from the search space (lines 6 and 7). First, the
algorithm substitutes the jth element of �x0 with the first ele-
ment of �xj to make a new candidate solution �x (line 10). Then
the algorithm calculates the partial derivative of f with respect
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to xi and puts it in the first element of �de. Second, the algo-
rithm substitutes the jth element of �x0 with the second element
of �xj and obtains a new candidate solution �x. Again the algo-
rithm calculates ∂f /∂xi and puts it in the second element of �de.
This process continues until all elements in �xj are used and
n elements of �de are obtained. ∂f /∂xi is calculated as fol-
lows: calculate the fitness value of �x, denoted by y1; add a
small value δx to the ith element of �x and calculate the fit-
ness value again, denoted by y2; calculate (y2 − y1)/δx as the
approximation of ∂f /∂xi (lines 11–14).

If xi and xj do not directly interact with each other, theoreti-
cally ∂f /∂xi should maintain the same value when xj changes.
However, due to numerical computational errors, ∂f /∂xi may
fluctuate slightly around the true value. The small computa-
tional errors of the partial derivative in turn may result in
large computational errors of the MIC between ∂f /∂xi and
xj. This may significantly affect the accuracy of identifying
interacting variables. In order to remove the computational
errors, the parameter β is employed, such that if the dif-
ference between ∂f /∂xi and the mean of the n number of
∂f /∂xi is less than β, the algorithm sets ∂f /∂xi to the mean
(lines 16–21).

Then, the algorithm calculates the MIC between the filtered
�de and the �xj. If MIC( �de, �xj) is greater than or equal to a given
threshold α, then xi and xj are regarded as directly interacting
with each other, and the corresponding entries of the IM(i, j)
as well as IM(i, j) are set to 1 (lines 22–24).

Once the IMd (IM only with direct interactions) is iden-
tified, the second stage is deployed, attempting to identify
the indirect interactions. This stage begins by constructing an
interaction graph based on the IMd: setting each decision vari-
able xi as a vertex i; connecting vertices i and j if IMd(i, j) = 1.
Then the breadth first search algorithm is employed to search
for the strongly connected components (SCCs) in the graph.
Finally, all the pairs of vertices i and j in each identi-
fied SCC are connected and the corresponding IM(i, j) and
IM(j, i) are set to 1. The algorithm returns the IM as the
output.

With the IM and IMd identified, three measures can be cal-
culated: 1) the degree of direct variable interaction (DDVI);
2) the degree of indirect variable interaction (DIVI); and 3) the
degree of variable interaction (DVI)

DDVI =
∑

1≤i �=j≤d IMd(i, j)

d(d − 1)

DVI =
∑

1≤i �=j≤d IM(i, j)

d(d − 1)

DIVI = DVI−DDVI.

We conclude this section with a brief discussion of the asso-
ciated computational cost (complexity) of our approach. For
each pair of decision variables, the computational cost when
examining direct interactions is 2n with respect to function
evaluations, where n is the sample size. In a d-dimensional
problem, the total number of decision variable pairs
is d(d− 1)/2. Therefore, the total number of function evalua-
tions used to obtain the IM is nd(d− 1). Note that the second
stage of MEE does not use any function evaluation.

TABLE II
EXTENDED BENCHMARK SUITE WITH SIX CATEGORIES AND 24

BENCHMARK FUNCTIONS. THE BASE FUNCTIONS ARE PRESENTED

IN TABLE III. R REPRESENTS ROTATION. THE GLOBAL MINIMA

FOR ALL BENCHMARK FUNCTIONS ARE f (�0) = 0

IV. EXPERIMENTAL METHODOLOGY

In this section, detailed numerical experiments are con-
ducted to evaluate the efficacy of the proposed MEE measure.
Three research questions guide the experimental design.
Q1. Is it possible to accurately measure the IM of a contin-

uous optimization problem using MEE? (Section IV-C)
Q2. Can the MEE measure be used to quantify the DVI in

a continuous optimization problem? (Section IV-D)
Q3. Is the MEE measure correlated with the solution quality

found by an EA? (Section IV-E)

A. Benchmark Functions

To adequately investigate the three research questions, we
extend the benchmark functions from CEC’2013 special ses-
sion on large scale global optimization [50]. The original
benchmark suite consisted of 15 benchmark functions with
fixed dimensionality (1000 or 905). We extend the suite to
24 benchmark functions with tunable dimensionality, which is
more reliable and flexible to evaluate the methods identifying
variable interactions. Operators such as rotating, shifting, sym-
metry breaking, and adding ill-condition [3] are also available
in this extended benchmark suite.

The extended benchmark suite consists of six categories
with 24 functions in total.

1) Fully separable functions: f1–f4.
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TABLE III
BASE FUNCTIONS: THE DIMENSIONALITY OF THE FIRST NINE BASES FUNCTIONS (FROM SPHERE TO WHITELY) ARE TUNABLE,

WHILE THE LAST THREE FUNCTIONS (SCHAFFER, LEVI, AND THREEHUMP) ARE 2-D

2) Partially separable functions with d/2 separable subcom-
ponents: f5–f8.

3) Partially separable functions with d/2 nonseparable
subcomponents: f9–f13.

4) Partially separable functions with 2 nonseparable sub-
components: f14–f16.

5) Overlapping functions: f17–f20.
6) Fully nonseparable functions: f21–f24.
The details of the 24 benchmark functions and base func-

tions are presented in Tables II and III. The letter R represents
the rotation operator, which is employed to generate interac-
tions between decision variables. The condition number for all
of the benchmark functions is 100 except for f1. The optima
of all the benchmark functions are shifted to f (�0) = 0.

As the interactions between decision variables are known for
the benchmark functions, we can use this suite of functions
to investigate the accuracy of any method used to identifying
variable interactions.

B. Performance Metrics

Standard machine learning performance metrics are intro-
duced to evaluate the performance of our proposed method
used to identify variable interactions: precision, recall, and
F-score (Q1). Precision measures the accuracy of identifying
interacting decision variables, while recall measures the com-
prehensiveness of identifying interacting decision variables.
The F-score is the harmonic mean of precision and recall.

Definition 3: For a given objective function f (�x), �x ∈ X,
and a method φ identifying variable interactions, let IMf be
the true IM of f (�x), and IMφ be the IM returned by φ. Then the

precision, recall, and F-score of φ on f are defined as follows:

precision =
∑

1≤i �=j≤d IMf (i, j) · IMφ(i, j)
∑

1≤i �=j≤d IMφ(i, j)
(15)

recall =
∑

1≤i �=j≤d IMf (i, j) · IMφ(i, j)
∑

1≤i �=j≤d IMf (i, j)
(16)

F-score =
∑

1≤i �=j≤d 2 · IMf (i, j) · IMφ(i, j)
∑

1≤i �=j≤d IMφ(i, j)+ IMf (i, j)
. (17)

Example 1: For the objective function listed in (1), the true
IM (IMf ) is shown in the left-hand side of the following
equation:

⎡

⎢
⎢
⎣

- 1 1 0
1 - 1 0
1 1 - 0
0 0 0 -

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

- 1 0 1
1 - 0 0
0 0 - 0
1 0 0 -

⎤

⎥
⎥
⎦

. (18)

Assume the IM returned by φ (IMφ) is shown on the right
hand side of (18). Entries equal to 1 in both IMf and IMφ are
highlighted in bold. Then, precision = 1/2; recall = 1/3; and
F-score = 2/5.

C. Identification of Pairwise Interaction (Q1)

In this section, we describe numerical experiments used
to evaluate the efficacy of the MEE method in terms of
identifying IM.

The MEE is calculated for each of the benchmark functions
proposed in Section IV-A, and evaluated by the performance
metrics introduced in Section IV-B. The dimensionality of the
benchmark functions are set to d = 10. The parameter setting
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TABLE IV
PARAMETER SETTINGS. THE VALUES EMPHASIZED IN BOLD

ARE THE DEFAULT PARAMETER SETTINGS

for MEE is n = 50, α = 0.2, β = 10−3, and δx = 10−6. For
each benchmark function and each method, 25 independent
runs are conducted. The average precision, recall, and F-score
values for the 25 independent runs are recorded. The perfor-
mance of MEE is compared with DG [27], a state-of-the-art
method used to identify variable interactions. The parameter
setting for DG is consistent with the original paper.

As part of the analysis, we replace the MIC values with
the Pearson correlation coefficient and the Spearman’s rank
correlation coefficient when examining the pairwise interac-
tions between decision variables [in Algorithm 1 (line 22),
simply change MIC( �de, �xj) > α to PeaCorr( �de, �xj) > α or
SpeRanCorr( �de, �xj) > α]. We refer to the model using Pearson
correlation coefficient/Spearman’s rank correlation coefficient
as “PCC”/“SRC” in the results section. MEE is compared with
PCC and SRC on the 24 benchmark functions. The parameter
setting for PCC and SRC are exactly the same as those used
in the MEE experiments.

The Kruskal–Wallis nonparametric one-way ANOVA
test [51] with 95% confidence interval is employed to deter-
mine whether at least one method is significantly different
from the others. Then a series of Wilcoxon rank-sum tests
(α = 0.05) with Holm p-value correction [51] are conducted
in a pairwise fashion to find the best performing method.

To test the sensitivity of MEE to the parameters, six different
values for each parameter are selected, as shown in Table IV.
The values emphasized in bold are the default parameter set-
ting. To test the sensitivity of MEE to each parameter, we set
other parameters to the default values and set this parameter
to the six different values one by one. For example, to test the
sensitivity of MEE to α, we set β = 10−3, n = 50, δx = 10−6,
and let α = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} one by one. Thus,
6×4 = 24 parameter settings were tested. To test the pairwise
interaction between parameters, we vary the parameter pair
over all possible combinations of values (6× 6 = 36) and set
other parameters to the default values. For each of the param-
eter settings, MEE is calculated for each of the 24 benchmark
functions with 25 independent runs. Therefore, 24×25 = 600
independent runs are conducted for each parameter setting.
The average values for precision, recall, and F-score of the
600 independent runs are recorded and used when evaluating
the parameter sensitivity of MEE.

D. Quantification of Variable Interaction (Q2)

In this section, we describe numerical experiments used
to evaluate the efficacy of the MEE measure in terms of
quantifying the level of variable interactions.

The MEE method is used to calculate the three measures:
1) DDVI; 2) DIVI; and 3) DVI for each of the 24 benchmark
functions using the default parameter setting (highlighted in
bold in Table IV). The MEE method is compared with EE and
Meta-model methods (see Section II-A1 for definitions). The
EE method uses mutual information to quantify the level of
variable interactions. The k-d partitioning is used to estimate
the mutual information between continuous variables [36]. The
sample size used to estimate d-dimensional entropy should be
greater than 2d [36]. As the 24 benchmark functions are all
10-D, we set the sample size n = 5000 for EE. The Meta-
model method builds a linear or quadratic regression model
based on n samples. It has been suggested that the sample
size n should be greater than 50 + 8d [37]. To achieve reli-
able results, we set the sample size n = 100d. Both linear
and quadratic regression models with interaction effects are
considered in this paper, and the corresponding adjusted coef-
ficient of determination (R̄2

l and R̄2
q) are calculated. For each

function and each method, 25 independent runs are conducted
to remove randomness, and the mean value of each measure is
recorded. For each measure, the Kruskal–Wallis nonparamet-
ric one-way ANOVA test [51] with 95% confidence interval
is employed to determine whether consistent results can be
obtained across the functions in each category.

E. Correlation With Algorithm Performance (Q3)

It is well-known that the interaction between decision vari-
ables is a factor that makes an optimization problem difficult
for some of the EAs to solve [1]–[3]. Thus it is reasonable to
assume that as the level of variable interactions increases in
an optimization problem, it may become more difficult for an
EA to solve. If a measure successfully quantifies the level of
variable interactions, therefore it should be correlated with the
algorithm performance. In this section, we describe numerical
experiments used to investigate the correlation between MEE
and algorithm performance.

Three fully separable benchmark functions—Elliptic,
Rastrigin, and Alpine—are used in this section (see Table III).
Separable functions are selected, as it is possible to set the
level of variable interactions by rotating a subset of the deci-
sion variables [3]. To the best of our knowledge, there is no
technique available to control the level of variable interactions
in a fully nonseparable function. For each benchmark function,
we set d = 100 and vary the number of interacting decision
variables over {5i, 0 ≤ i ≤ 20}. Therefore, for each bench-
mark function, 21 instances are obtained with different level
of variable interactions (number of interacting decision vari-
ables). The optimal solution for all the instances is f (�0) = 0.
Note that for each benchmark function, the scale of the 21
instances are the same as rotation does not change the scale
of a function.

There are generally two ways to measure algorithm perfor-
mances. The first way is to use the expected running time,
which is the expected number of function evaluations used to
find a target solution at the first time. An alternative way is to
compare the quality of the best solution found within a given
computational budget. In the situation that it is difficult to find



SUN et al.: QUANTIFYING VARIABLE INTERACTIONS IN CONTINUOUS OPTIMIZATION PROBLEMS 257

TABLE V
PARAMETER SETTINGS FOR THE SELECTED OPTIMIZERS

a target solution, the second criterion is often used to measure
algorithm performance. The benchmark functions used in this
section are high-dimensional (100) and difficult for optimizers
to solve, therefore, we use the best solution found within the
fixed number of function evaluations as the measurement of
algorithm performance.

MEE is used to calculate the DVI for each instance with
default parameter setting. We treat direct interaction and indi-
rect interaction as equally important to problem difficulty.
Therefore, only the DVI measure is considered in this sec-
tion. Four widely used EAs: 1) CMA-ES [26]; 2) DE [52];
3) PSO [53]; and 4) GA [54] are selected to solve each
instance. Note that the selection of the four optimizers is
biased. Due to the large number of existing EAs, we cannot
take all of them into consideration. Here, our goal is simply
to see whether insights into relationships between algorithm
performance and variable interaction levels as calculated by
MEE can be documented. Therefore, we limit the number of
algorithm tested to four widely used EAs with default set-
tings presented in Table V. Note that the maximal number of
function evaluations used by each optimizer is always 105.

For each optimizer and each instance, 25 independent runs
are conducted. The mean of the best solution found in the fixed
number of function evaluations is recorded. For each function
and each optimizer, the Spearman’s rank correlation coeffi-
cient (rs), Pearson correlation coefficient (rp), and MIC (rm)
between DVI and the mean of best solutions found in the fixed
number of function evaluations are calculated across the 21
instances. To complete the analysis, we also compare results
from the MEE with EE and meta-model (R̄2

l and R̄2
q). The

statistic tests employed to determine the best performances
are the same with Section IV-C.

V. ANALYSIS OF EXPERIMENTAL RESULTS

A. Identification of Pairwise Interaction (Q1)

1) Performances Comparison: Table VI lists the exper-
imental results when MEE was used to identify pairwise
interactions between decision variables in the 24 benchmark
functions. The performances of MEE is compared with DG,

PCC, and SRC in terms of precision, recall, and F-score. The
different categories of the benchmark functions are divided
by the double line. The best performances are highlighted in
bold. We now provide a detailed analysis of the experimental
results for each category.

Each of the methods, MEE, DG, and PCC, performs equally
well on category I functions (see Section IV-A). Category I
consists of four fully separable functions (f1–f4), each with
ten separable decision variables. The MEE, DG, and PCC
methods successfully identify all decision variables as being
separable. Therefore, each method correctly records a score
of 1.00 in terms of precision, recall, and F-score. The SRC
method falsely classifies some separable decision variables as
nonseparable, resulting in a low precision and F-score.

The MEE method achieves equal or better results than DG,
PCC, or SRC on category II functions. Category II consists
of four partially separable functions (f5–f8). Each function has
five separable and nonseparable decision variables. The MEE
method achieves the best score in terms of precision, recall,
and F-score on f5, f6, and f7. However on f8, MEE identifies
all the ten decision variables as being nonseparable, resulting
in a low precision. The reason may be the computational error
in the system. The DG and PCC methods correctly identify the
five separable and nonseparable decision variables on f6 and f7.
However on f5, DG and PCC falsely classify some interact-
ing decision variables as independent. On f8, DG and PCC
falsely classify some interacting variables as independent and
some independent variables as interacting, resulting in a poor
precision and recall. The SRC method identifies all the deci-
sion variables as being interacting, resulting in a low precision
and F-score.

The MEE method achieves equal or better results than DG,
PCC, or SRC on category III functions. Category III consists
of four partially separable functions (f9–f12). Each function has
five nonseparable subcomponents and each subcomponent has
two decision variables. The MEE method accurately identi-
fies all separable and nonseparable decision variables on each
function. The DG and PCC methods achieve best score on
f11 and f12. However on f9 and f10, the performances of DG
and PCC are worse than MEE in terms of recall and F-score.
The SRC method is outperformed by the other methods on
category III functions.

The MEE method achieves comparable or better results
than DG on category IV functions. Category IV consists of
four partially separable functions (f13–f16). Each function has
two nonseparable subcomponents and each subcomponent has
five decision variables. The MEE method achieves the best
score for precision, recall, and F-score on f14, f15, and f16.
On f13, MEE falsely identifies all decision variables as inter-
acting, resulting in a poor precision (0.44). The DG method
achieves the best precision, recall, and F-score on f15 and f16.
However, DG performs poorly on f13, with precision = 0.77
and recall = 0.82 (1 is the best score). On f14, DG sometimes
fails to capture some interacting decision variables. The PCC
and SRC methods perform worse than MEE on f13 and f16.

The MEE method achieves better results than DG or PCC on
category V functions. Category V consists of four overlapping
functions (f17–f20). The MEE method achieves the best score
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TABLE VI
EXPERIMENTAL RESULTS OF THE MEE, DG, PCC, AND SRC METHODS ON THE 24 BENCHMARK FUNCTIONS IN TERMS OF Precision, Recall,

AND F-Score. THE MEAN RESULTS BASED ON 25 INDEPENDENT RUNS ARE PRESENTED. PCC AND SRC METHODS ARE EMPLOYED

TO SHOW THE EFFICACY OF MIC COMPARED WITH PEARSON CORRELATION COEFFICIENT AND SPEARMAN’S RANK

CORRELATION COEFFICIENT. THE BEST PERFORMANCES FROM THE FOUR METHODS ARE HIGHLIGHTED

IN BOLD [WILCOXON RANK-SUM TESTS (α = 0.05) WITH HOLM p-VALUE CORRECTION]

Fig. 2. Experimental results of the MEE method with different parameter settings on the 24 benchmark functions. Sensitivity to (a) α, (b) β, (c) n, and
(d) δx. The horizontal axis represents the corresponding parameter values. The vertical axis represents the averaged precision, recall, and F-score, where “�”
represents precision, “◦” represents recall, and “�” represents F-score.

on f17, f18, and f20 and nearly best score on f19 for recall
and F-score. The DG method is unable to identify all variable
interactions in this category. The recall rates of the DG method
on the four overlapping functions are very low (less than 0.40),
resulting in a low F-score. The recall rates of PCC on f18 and
f19 are also very low. On f20, the PCC method falsely classifies
some independent variables as interacting, resulting in a low
precision. The SRC method achieves comparable results with
the MEE method on f17, f18, and f19.

The MEE, DG, and PCC methods perform equally well
on category VI functions. Category VI consists of four fully
nonseparable functions (f21–f24), each with ten nonsepara-
ble decision variables. The MEE, DG, and PCC methods
accurately identify all the decision variables as nonseparable.
Therefore, all of them achieve the best score for precision,
recall, and F-score. The SRC method performs slightly worse
than the other methods.

In summary, the proposed MEE method achieves the best
score (1.00) in terms of precision, recall, and F-score on 21

out of the 24 benchmark functions. MEE outperforms the DG,
PCC, and SRC methods on the 24 benchmark functions. The
comparison between MEE and PCC/SRC confirms that the
MIC is more reliable than the Pearson correlation coefficient
or Spearman’s rank correlation coefficient when identifying
functional relationships. The reason is that the Pearson cor-
relation coefficient can only capture linear relationships and
the Spearman’s rank correlation coefficient can only capture
increasing or decreasing relationships.

2) Parameter Sensitivity: The experimental results for the
MEE method with different parameter settings on the 24
benchmark functions are presented in Fig. 2. Fig. 2(a)–(d)
presents the sensitivity to α, β, n, and δx, respectively.

Fig. 2(a) shows that the MEE method performs well in a
wide range of α value. In fact, when α is in the range of
0.1–0.3, precision, recall, and F-score are greater than 0.90.
When α increases, precision increases slightly, while recall
and F-score decreases. The reason is that when α increases,
the threshold to identify variable interaction becomes higher.



SUN et al.: QUANTIFYING VARIABLE INTERACTIONS IN CONTINUOUS OPTIMIZATION PROBLEMS 259

Therefore, some pairwise interacting decision variables with
small MIC value will be falsely identified as independent,
resulting in a decrease in recall. On the other hand, some inde-
pendent pairwise decision variables with large MIC value will
be correctly identified as independent, resulting in an increase
in precision. Consider two extreme cases: 1) if α = 0, all
pairwise decision variables will be identified as interacting,
therefore recall = 1 and 2) if α = 1, all pairwise decision vari-
ables will be identified as independent, therefore recall = 0,
and precision = 1.

Fig. 2(b) shows that the MEE method performs well across
a wide range of β values. When β is in the range of 10−3

to 10−1, precision, recall, and F-score are greater than 0.90.
When β = 10−6, the precision and F-score decrease signif-
icantly. The reason may be that the computational error in
the system is greater than 10−6. Therefore, β = 10−6 can no
longer remove the computational errors from the system. This
result suggests that the selection of β value should be greater
than 10−6.

Fig. 2(c) shows that the performance of the MEE method
is not sensitive to the sample size n. When n is in the range
of 10–400, precision, recall, and F-score are all greater than
0.92. Ideally, when n increases, precision, recall, and F-score
should also increase. However, such phenomenon cannot be
observed from Fig. 2(c) (the optimal sample size n = 50). So
far, we have no explanation for this phenomenon.

Fig. 2(d) shows that the MEE method performs well when
δx is in the range of 10−6 to 10−3 (precision, recall, and
F-score greater than 0.90). The parameter δx is one of the main
factors that result in computational errors in the system. When
δx is less than 10−6, precision and F-score decreases quickly.
The reason may be that the computational errors increase sig-
nificantly when δx < 10−6. It suggests that the selection of δx
should be greater than or equal to 10−6.

The pairwise interactions between parameters are also inves-
tigated. Due to page limits, we do not present the detailed
results in this paper. However, two conclusions can be drawn
from the results: 1) no significant pairwise interactions can
be observed between parameters except for (β, δx) and 2) our
proposed MEE method achieves high accuracy across a wide
range of parameter settings when identifying variable interac-
tions.

B. Quantification of Variable Interaction (Q2)

This section presents the experimental results of the pro-
posed MEE measure when quantifying the level of variable
interactions in the 24 benchmark functions. The performance
of MEE is compared against the EE and meta-model.

As shown in Table VII, consistent results can be obtained
by MEE for each category in most cases, while EE and meta-
model (R̄2

l , R̄2
q) generate diverse results. In category I, MEE

identifies all of the four functions as being fully separable
(DVI = 0), while the results obtained by EE and meta-model
are diverse: EE ranging from 0.22 to 2.01; R̄2

l ranging from
0.00 to 0.25; R̄2

q ranging from 0.59 to 1.00. In category II,
MEE identifies all the functions as partially separable with
DVI = 0.22 expect for f8. On f8, MEE unexpectedly identifies

TABLE VII
EXPERIMENTAL RESULTS OF THE MEE, EE, AND META-MODEL ON THE

24 BENCHMARK FUNCTIONS IN TERMS OF QUANTIFYING VARIABLE

INTERACTIONS. THE MEAN RESULTS BASED ON 25 INDEPENDENTS

RUNS ARE PRESENTED. FOR EACH METHOD, CONSISTENT RESULTS

ACROSS THE BENCHMARK FUNCTIONS IN EACH CATEGORY ARE

HIGHLIGHTED IN BOLD (KRUSKAL–WALLIS ONE-WAY

ANOVA TEST WITH α = 0.05)

all decision variables as interacting. The reason may be that
the fitness landscape of f8 is highly rugged, resulting in large
computational errors in the system. In category III, the MEE
measure identifies all the functions as partially separable with
DVI = 0.11, while we cannot observe any consistent results
obtained by EE or meta-model. In category IV, the DVI
obtained by MEE for f14, f15, and f16 are all 0.44, while for
f13, DVI = 1.00. The reason why MEE identifies all decision
variables as being interacting in f13 is the same with f8. In
categories V and VI, MEE identifies all the functions as being
fully nonseparable (DVI = 1.00). However, category V is fully
nonseparable with indirect interaction (DIVI > 0), while cat-
egory VI is fully nonseparable only with direct interaction
(DIVI = 0). The results obtained by EE, R̄2

l and R̄2
q for cate-

gories V and VI are diverse. In summary, MEE is more robust
and accurate when compared against EE and meta-model when
quantifying variable interactions in a continuous optimization
problem.

C. Correlation With Algorithm Performances (Q3)

Fig. 3 shows the linear regression between the DVI and the
mean of the best solutions obtained by each algorithm when
solving the Elliptic/Rastrigin/Alpine benchmark functions. The
corresponding Pearson correlation coefficient (rp), Spearman’s
rank correlation coefficient (rs), and MIC (rm) values are listed
in Table VIII.

High correlation can be observed between DVI and the
mean of best solutions found by DE/GA/PSO on the three
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Fig. 3. Linear regression results for the DVI and the mean of the best solutions (fitness) found by each algorithm on each of the benchmark functions. Top:
Elliptic function. Middle: Rastrigin function. Bottom: Alpine function. The vertical axis represents the mean of the best solutions found by the algorithm
for a benchmark function. The horizontal axis represents the corresponding DVI returned by MEE. (a) DE_Ell. (b) GA_Ell. (c) PSO_Ell. (d) CMA-ES_Ell.
(e) DE_Ras. (f) GA_Ras. (g) PSO_Ras. (h) CMA-ES_Ras. (i) DE_Alp. (j) GA_Alp. (k) PSO_Alp. (l) CMA-ES_Alp.

TABLE VIII
CORRELATION BETWEEN DVI/EE/R̄2

l /R̄2
q AND THE MEAN OF THE BEST SOLUTIONS FOUND BY EACH OPTIMIZER ON EACH BENCHMARK FUNCTION.

THE rp REPRESENTS THE PEARSON CORRELATION COEFFICIENT; rs REPRESENTS THE SPEARMAN’S RANK CORRELATION COEFFICIENT;
rm REPRESENTS THE MIC. THE HIGHEST CORRELATION (ABSOLUTE VALUE) IS HIGHLIGHTED IN BOLD

benchmark functions. In fact, the rp, rs, and rm are close to 1
in most cases. The plot shows that when DVI increases from
0 to 1, the optimization problem becomes more difficult for
DE/GA/PSO to solve.

Take DE as an example, there is a strictly increasing rela-
tionship between DVI and the mean of best solutions found
on Alpine benchmarks [Fig. 3(i)]. The easiest function is the
one with DVI = 0, and the hardest function is the one with
DVI = 1. On the Elliptic and Rastrigin functions, there is a
high correlation between DVI and the mean of best solutions
found (rs = 0.98/0.97). Similar conclusions can be drawn
for GA and PSO. However for CMA-ES, there is no signifi-
cant correlation between DVI and the mean of best solutions

found on Elliptic/Rastrigin benchmarks (rs = −0.11/0.35).
The reason for this may be that CMA-ES is designed to be
rotationally invariant. Therefore, it performs equally well on
separable and nonseparable functions [55].

We cannot observe significant correlation between EE and
the mean of the best solutions found by DE/GA/PSO/CMA-ES
on the three benchmark functions. Therefore, EE may not be a
reliable measure in terms of quantifying interactions between
continuous variables.

The correlations between R̄2
l and the mean of the best

solutions found by DE/GA/PSO on Rastrigin and Alpine
benchmark functions are generally significant. However para-
doxically, on the Rastrigin function the correlation is negative
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(rs < 0), while on Alpine function the correlation is positive
(rs > 0).

The R̄2
q measure performs well on the three benchmark func-

tions. Note that the correlation between R̄2
q and the mean of

the best solutions found by each optimizer should be negative
(rs < 0). The reason for this is that as the DVI increases,
an optimization problem becomes more complex, therefore
the model accuracy R̄2

q decreases. However, we observe that
the model accuracy R̄2

q varies significantly across different
benchmark functions with the same DVIs. For example the
model accuracy R̄2

q = 0.99 on fully separable Elliptic func-
tion; while R̄2

q = 0.48 on fully separable Alpine function. The
reason for this may be that, apart from variable interactions,
other important problem characteristics, e.g., modality also
have significant impacts on the model accuracy R̄2

q [5]. This
observation is consistent with the results shown in Table VII.

VI. ALGORITHM DESIGN USING MEE

In this section, we investigate how the DVIs within a con-
tinuous optimization problem can be used to determine the
choice of algorithms used. Here, we examine the overall opti-
mization performance when the MEE measure is embedded
into an algorithm design framework.

The separability prototype for automatic memes
(SPAM) [21] framework consists of two stages: a sepa-
rability analysis stage and an optimization stage. In the first
stage, the level of variable interactions is approximated.
Then the SPAM framework selects appropriate operator(s) to
guide the search based on the level of variable interactions.
In the original paper [21], two evolutionary operators are
employed—the S operator [56] and the R operator [57].
The S operator searches along each dimension, which is
efficient to solve separable problems. The R operator (which
is the Rosenbrock algorithm) perturbs all the variables
simultaneously to follow the gradient of the fitness landscape.
The R operator is designed for nonseparable optimization
problems. In this paper, we use the same candidate operators
(R and/or S) used by Caraffini et al. [21]. Note that other
efficient algorithms for separable or nonseparable problems
can also be used as the candidate operators.

In the original SPAM framework, CMA-ES is employed to
obtain the covariance matrix (C) within a given computational
budget. Then the correlation coefficient between each pair of
decision variables is calculated

ρi,j = Ci,j
√

Ci,iCj,j
. (19)

The |ρi,j| is normalized to 0 if 0 ≤ |ρi,j| < 0.2, to 0.3 if 0.2 ≤
|ρi,j| < 0.4, to 0.5 if 0.4 ≤ |ρi,j| < 0.6, to 0.7 if 0.6 ≤ |ρi,j| <
0.8, to 1 if 0.8 ≤ |ρi,j| ≤ 1. Then an index ξ is calculated
based on the normalized matrix ρn as the approximation of
the level of variable interactions

ξ = 2

d(d − 1)

d−1
∑

i=1

d
∑

j=i+1

ρn
i,j (20)

where d is the dimensionality. The index ξ is then employed to
calculate the activation probabilities of the S and R operators.

Note that the best solution found by CMA-ES in this stage
(separability analysis stage) will be passed to the following
stage as the initial point.

In the subsequent optimization stage, the index ξ is used to
assign an activation probability to each operator. If ξ = 0, the
optimization is fully separable, therefore only the S operator is
used to solve the problem. If ξ ≥ 0.5, the optimization prob-
lem is regarded as fully nonseparable and only the R operator
is used to guide the search. If 0 < ξ < 0.5, the optimization
problem is considered as partially separable and two operators
coexist with activation probabilities defined as follows:

ps = 1− 2ξ, pr = 2ξ. (21)

The original SPAM framework has been tested on multiple
benchmark suites and achieved good results compared with
the state-of-the-art optimization algorithms [21]. However, the
framework does have some limitations.

1) In the original SPAM framework, the Pearson correlation
coefficient is used to identify variable interactions, which
is not reliable as we have shown in Section V-A.

2) Normalizing the coefficient matrix |ρ| to |ρd| adds bias.
3) It is not reasonable to consider the optimization problem

as fully nonseparable when ξ ≥ 0.5.
To address these limitations, the MEE measure can be used

to quantify the level of variable interactions, and the DVI
value generated by MEE can be used to assign the activation
probabilities to the S and R operators

ps = 1− DVI, pr = DVI. (22)

Given the discussion above, we test this new version of
SPAM framework where MEE is embedded. We denote our
model as SPAM_MEE. Note that the best solution found in
the separability analysis stage (MEE stage) will also be passed
to the optimization stage.

The results obtained by SPAM_MEE are compared against
the results generated using SPAM and SPAM0.5 on the
24 benchmark functions (Table IX). SPAM0.5 is a version of
SPAM with the activation probabilities of the S and R oper-
ators both equal to 0.5. To save computational cost in the
separability analysis stage, the sample size used in MEE was
set to n = 10, while other parameters are the default val-
ues highlighted in Table IV. Therefore the number of function
evaluations used by MEE is 10d(d−1). The maximum number
of function evaluations was set to 3× 103d, divided between
the separability analysis stage and optimization stage. Other
parameter setting is consistent with [21]. To complete the
analysis, we also compare SPAM_MEE with CMA-ES [26].
The parameter setting for CMA-ES is consistent with the one
presented in Table V, but the maximum number of function
evaluations was set to 3× 103d.

For each algorithm and benchmark function combination,
25 independent runs were carried out. The mean and stan-
dard deviation of the best solutions found within the given
computational budget are recorded and shown in Table IX.
The two-sided Wilcoxon test (α = 0.05) with Holm p-value
correction [51] was used to determine the best performance
from SPAM_MEE, SPAM and SPAM0.5 in a pairwise fashion.
The best performances are highlighted in bold in Table IX. We
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TABLE IX
EXPERIMENTAL RESULTS OF SPAM_MEE, SPAM, AND SPAM0.5 ON THE 24 BENCHMARK FUNCTIONS. THE BEST PERFORMANCES OF THE

THREE ALGORITHMS ARE HIGHLIGHTED IN BOLD. THE PERFORMANCE OF SPAM_MEE IS ALSO COMPARED WITH CMA-ES.
THE BETTER RESULTS OBTAINED BY SPAM_MEE AND CMA-ES IS MARKED WITH † (TWO-SIDED WILCOXON

RANK-SUM TEST WITH THE CONFIDENCE INTERVAL OF 95%)

observed that SPAM_MEE achieves equal or better results than
SPAM and SPAM0.5 on the 24 benchmark functions. Note
that SPAM_MEE uses more function evaluations than SPAM
or SPAM0.5 in the separability analysis stage. Therefore,
the number of function evaluations used by SPAM_MEE in
the optimization stage is less than that used by SPAM or
SPAM0.5. This finding suggests that it may be worth assigning
a portion of computational budget to gain an insight into the
fitness landscape of an optimization problem. The information,
in turn, may guide the search toward better region of the fit-
ness landscape. The SPAM_MEE achieves comparable results
with CMA-ES when solving the 24 benchmark functions.

VII. CONCLUSION

In this paper, we have investigated the effects of interac-
tions between decision variables in continuous optimization
problems. Here, the overarching goal was to examine whether
it was possible to improve the performance of an optimiza-
tion algorithm by guiding the search based on the level of
variable interactions. A robust ELA measure for continuous
optimization problems, MEE, was introduced. MEE identifies
the IM of decision variables in a continuous optimization prob-
lem, which is then used to generate an accurate measure of
the DVI (encapsulating both direct and indirect variable inter-
actions) spanning a suite of benchmark problems. We have
shown that the solution quality found by an EA is correlated
with the level of variable interaction in a given problem. This
observation suggests that fitness landscape characteristic cap-
tured by MEE can be used as a source of information to predict

algorithm performance. Significantly, when the MEE measure
was embedded into an optimization algorithm design frame-
work, the performance of our model was at least as good, and
in many cases outperformed, the SPAM model on the suite
of benchmark problems. These results confirm our hypothe-
sis that quantifying the level of variable interactions can be
used to guide the search toward better regions of the fitness
landscapes.

In future work, we plan to complete further analysis of
the MEE model and explore additional avenues to guide the
search using the DVIs. Another direction worth pursuing is
focussed on the development of an algorithm selection frame-
work, where a range of ELA measure are combined with MEE,
as described by Muñoz et al. [10], [12].
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