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This paper presents a new method to solve the Maximum Edge Disjoint Paths (MEDP) problem. Given 

a set of node pairs within a network, the MEDP problem is the task of finding the largest number of 

pairs that can be connected by paths, using each edge within the network at most once. We present a 

heuristic algorithm that builds a hybridisation of Lagrangian Relaxation and Particle Swarm Optimisation, 

referred to as LaPSO. This hybridisation is combined with a new repair heuristic, called Largest Violation 

Perturbation (LVP). We show that our LaPSO method produces better heuristic solutions than both cur- 

rent state-of-the-art heuristic methods, as well as the primal solution found by a standard Mixed Integer 

Programming (MIP) solver within a limited runtime. Significantly, when run with a limited runtime, our 

LaPSO method also produces strong bounds which are superior to a standard MIP solver for the larger 

instances tested, whilst being competitive for the remainder. This allows our LaPSO method to prove 

optimality for many instances and provide optimality gaps for the remainder, making it a “quasi-exact”

method. In this way our LaPSO algorithm, which draws on ideas from both mathematical programming 

and evolutionary algorithms, is able to outperform both MIP and metaheuristic solvers that only use ideas 

from one of these areas. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

In communication networks there often exist multiple informa- 

ion requests that need to be facilitated simultaneously across the 

etwork. In many applications it is important to ensure that no 

wo connection paths within the network interfere with one an- 

ther, resulting in multiple disjoint paths. The task of connecting 

he largest number of requesting and transmitting node pairs, of- 

en termed commodities, without any two paths sharing any edges 

efines the Maximum Edge Disjoint Path (MEDP) problem. The 

EDP problem can be found in a wide array of applications. In Op- 

ical Networks, different paths using the same wavelength are not 

llowed to share physical links ( Raghavan & Upfal, 1994 ). In Very 

arge Scale Integration (VLSI) design, it is a requirement that wire 

aths do not interfere with each other ( Chan, Chin, & Ting, 2003; 

erez, 1998 ). Edge Disjoint Paths also play an important role in 

d Hoc Networks, to reduce energy consumption ( Sumpter, Burson, 
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particle swarm optimisation hybrid, European Journal of Operational Re
ang, & Chen, 2013 ) and reduce signal dropout rates ( Jain & Das,

005; Li & Cuthbert, 2004 ). In Virtual Circuit Routing and Admis- 

ion control, disjoint-paths are often required when there is only 

imited bandwidth available ( Awerbuch, Gawlick, Leighton, & Ra- 

ani, 1994 ) 

As these problem types tend to be quite large, greedy based 

euristics have traditionally been used to solve the MEDP problem. 

xamples of such algorithms include the Simple Greedy Algorithm 

SGA) ( Kleinberg, 1996 ), the bounded-length greedy algorithm 

 Kleinberg, 1996 ), and the greedy path algorithm ( Kolliopoulos & 

tein, 20 04 ). In 20 07 Blesa and Blum developed the first meta-

euristic to solve the MEDP problem using an Ant Colony Opti- 

isation (ACO) algorithm ( Blesa & Blum, 2007 ). This ACO algo- 

ithm is still used as a benchmark for the MEDP problem. Since 

012, a variety of new methods have been developed, including a 

onstraint based Local Search ( Pham, Deville, & Van Hentenryck, 

012 ), a Genetic Algorithm ( Hsu & Cho, 2015 ), a Message Passing 

lgorithm ( Altarelli, Braunstein, Dall’Asta, De Bacco, & Franz, 2015 ) 

nd a Two-Stage Hybrid Metaheuristic ( Martín, Sánchez, Beltran- 

oyo, & Duarte, 2020 ). A limitation these existing techniques face 

s the inability to provide any performance guarantees in the con- 

ext of optimality gaps. In this paper we attempt to outperform 
aximum edge disjoint path problem using a modified Lagrangian 

search, https://doi.org/10.1016/j.ejor.2021.01.009 
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Fig. 1. An example of the MEDP problem. In the MEDP problem, the complicating 

constraint is that each edge in the network has a capacity constraint of one. In 

this example, where there exist 4 commodities to be routed across the network 

from their respective source nodes ( S i ) to their respective terminal nodes ( T i ), due 

to the edge capacity constraints, the maximum number of commodities that could 

be successfully routed through the network from their source to terminal nodes is 

two. 

s

n

a

o

t

n

s

e  

p

z

e

c

o

2

M

(

p

n

(  

s  

e

2

g

w

f

b

t

(

M

i

t

w

l

m

o

d

s

p

t

hese previous methodologies in both primal solution qualities of 

he non-trivial, large problem instances, as well as being the first 

aper to provide good Upper Bounds for the instances tested. To 

ccomplish both goals, we use a modified Lagrangian Heuristic and 

article Swarm Optimisation Hybrid (LaPSO) algorithm, originally 

eveloped by ( Ernst, 2010; Ernst & Singh, 2012 ). Whilst this hybrid 

ethod has worked well on a limited number of problems, this pa- 

er provides a more extensive application test, carrying out further 

xamination of the inner workings behind the LaPSO algorithm. 

The motivation for using a Lagrangian Heuristic based tech- 

ique arises after modelling the MEDP problem as an Integer Pro- 

ram (IP). By relaxing the edge capacity constraints for the MEDP 

roblem, the problem can be decomposed into a series of inde- 

endent shortest path problems, which are easily solvable using 

 well known shortest path algorithm such as Dijkstra’s method 

 Dijkstra, 1959 ). This relaxation approach, termed Lagrangian Re- 

axation (LR) ( Fisher, 1981 ), has to the best of our knowledge not

een attempted previously to solve the MEDP problem. Solving 

he relaxed problem provides us with Upper Bounds for the opti- 

al solutions to the original MEDP problem, something traditional 

euristic based techniques are unable to provide. Whilst a tradi- 

ional Mixed Integer Programming (MIP) solver could be used to 

rovide bounds for small scale problems, these solvers are unable 

o do so in a reasonable amount of time as problem sizes increase. 

olutions to the Lagrangian Relaxed problem are often almost fea- 

ible, and are suitable candidates for a good repair heuristic. An- 

ther unique contribution of this paper is the creation of a novel 

epair heuristic termed Largest Violation Perturbation (LVP) for the 

EDP problem. The LVP repair heuristic uses perturbation variables 

hich are introduced in the LaPSO algorithm to increase exploita- 

ion of promising solutions, something which traditional LR tech- 

iques lack. 

In addition to the creation of a new repair heuristic, we provide 

urther analysis surrounding the effect that the perturbation vari- 

bles have on both the primal solution and bound qualities, some- 

hing which has not been done previously ( Ernst, 2010; Ernst & 

ingh, 2012 ). We also provide further tests surrounding the par- 

icle swarm, showing the effect a population based metaheuristic 

an have when hybridised with a traditional exact technique. The 

dapted LaPSO method was found to produce significantly better 

esults, becoming the new state-of-the-art for many of the prob- 

em instances tested, particularly on the larger problem instances. 

e also show that LaPSO can generate tighter bounds than a tra- 

itional MIP solver and the LR based Volume algorithm ( Barahona 

 Anbil, 20 0 0 ), especially for the largest instances tested when 

iven a limited CPU runtime. This demonstrates that our hybrid 

ethod outperforms both base optimisation approaches (meta- 

euristics and Lagrangian Relaxation) from which it draws inspi- 

ation. 

The rest of this paper is structured as follows. Section 2 intro- 

uces the background and related work. Our main approach is de- 

cribed in Section 3 . Section 4 details the experimental design and 

resents the results. Section 5 then concludes the paper. 

. Background and related work 

In this section we summarise the MEDP problem, the previous 

ethods used to solve the MEDP problem as well as provide the 

ecessary background required to understand the LaPSO algorithm. 

he LaPSO algorithm incorporates techniques such as: Lagrangian 

elaxation, Wedelin’s Algorithm and Particle Swarm Optimisation. 

.1. Maximum edge disjoint problem 

The MEDP problem can be defined as follows: Let G = (V, E) 

epresent an undirected graph. Let K = { s j , t j }| j = 1 . . . | K| repre-
2 
ent a list of commodities K containing both source and terminal 

odes (s j , t j ) , for which the commodity must be transported from 

nd to respectively. Each edge e ∈ E has a capacity constraint of 

ne, meaning it can transport at most one commodity. The objec- 

ive of the MEDP is to maximise the number of source and termi- 

al node pairs that can be successfully connected whilst also en- 

uring that each edge does not violate its capacity constraint. An 

xample of the MEDP problem can be seen in Fig. 1 . In the MEDP

roblem we consider in this paper, we assume all edge costs to be 

ero, and therefore all paths, no matter their length, are consid- 

red equally as good. Determining whether a set of commodities 

an successfully be connected in this way is famously one of Karp’s 

riginal NP-hard problems ( Karp, 1972 ). 

.2. Previous MEDP attempts 

For a long time the only type of methods used to solve the 

EDP had been simple greedy heuristics. Then Blesa and Blum in 

 Blesa & Blum, 2007 ) described the first metaheuristic based ap- 

roach to solve the MEDP problem. Since then, a variety of tech- 

iques have been tested, including Constraint-Based Local Search 

 Pham et al., 2012 ), Genetic Algorithm ( Hsu & Cho, 2015 ), Mes-

age Passing ( Altarelli et al., 2015 ) and a Two-stage Method ( Martín

t al., 2020 ). 

.2.1. Greedy heuristics 

The MEDP problem is usually required to be solved on large 

raphs, and as a result many greedy heuristic based algorithms 

ere originally explored. Greedy heuristic algorithms tend to be 

ast, however they can produce results which are quite far from 

eing optimal. The greedy heuristic algorithm displaying the best 

ime-complexity is known as the Simple Greedy Algorithm (SGA) 

 Kleinberg, 1996 ) and is commonly used as a benchmark for the 

EDP problem ( Blesa & Blum, 2007 ). The SGA algorithm simply 

terates through all commodity pairs, finding the shortest path be- 

ween source and terminal nodes using available edges in the net- 

ork. When an edge is used in a path, it is discarded from the 

ist of available edges, and is no longer accessible for other com- 

odity paths. As discussed in ( Blesa & Blum, 2007 ), finding the 

ptimal solution using this approach is sometimes not possible 

ue to the deterministic decisions made during the solution con- 

truction phase. Improving on the SGA can be done through im- 

lementing multiple restarts, and has been labelled as the Mul- 

iple Start Greedy Algorithm (MSGA) ( Blesa & Blum, 2007 ). This 
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pproach builds upon the SGA by allowing for multiple restarts 

hereby ensuring that different iteration orders are checked, reduc- 

ng the problem of determinism that the SGA faced. 

.2.2. ACO 

Blesa and Blum’s Ant Colony Optimisation (ACO) approach 

 Blesa & Blum, 2007 ) represents the first metaheuristic used to 

olve the MEDP problem. The ACO approach decomposes the MEDP 

roblem into | K| sub-problems, where | K| is the number of com- 

odities. Each sub-problem is tasked with finding a suitable path 

onnecting its respective source and terminal node pair. Each sub- 

roblem is solved by a different “ant” using a pheromone model 

hich is common in all ACO algorithms. Whilst the solution pro- 

uced by all | K| ants may not be feasible, it can be repaired using a

imple repair heuristic. In this case, the repair heuristic consists of 

teratively removing paths, in order of those containing the most 

umber of shared edges until a feasible solution is found ( Blesa 

 Blum, 2007 ). Whilst the ACO method was state-of-the-art for a 

ong time, recently two other methods have been developed which 

epresent the new state-of-the-art. 

.2.3. Constraint-Based local search 

The Constraint-Based Local Search method introduced in ( Pham 

t al., 2012 ) has two variants - L S-SGA and L S-R. L S-SGA initialises

 solution by randomly creating paths for all commodity source- 

erminal pairings. It then applies a “LocalMove” operator in an ef- 

ort to decrease the number of edge violations. A repair heuris- 

ic called Extract is applied which iteratively removes commodities 

ntil a feasible solution exists. Edges from these solutions are re- 

oved from the graph, and a Simple Greedy Algorithm (SGA) is 

pplied to the remaining edges for each commodity pair not con- 

ected. LS-R relies on recursive calls, each time storing the feasible 

aths that are found when connecting commodity source-terminal 

airs. The edges involved in these solutions are removed from the 

raph during each recursive call. A Greedy Local Search is used 

o create paths connecting each commodity’s source and terminal 

odes. 

.2.4. Genetic algorithm 

Hsu and Cho developed a Genetic Algorithm (GA) to solve the 

EDP problem ( Hsu & Cho, 2015 ). Each individual within the pop- 

lation contains | I| paths, where each path is encoded with real 

alues in the interval [0,1]. Each of these values represents the 

odes priority of being selected during path construction. Given 

 pair of source and terminal nodes, s k and t k , starting from s k a

ath is created by considering nodes adjacent to s k , with the high- 

st priority node being selected. Such a procedure is continued un- 

il the terminal node t k is reached. This procedure is carried out 

 times, creating k paths. A repair heuristic is then run, keeping 

nly a subset of these paths such that there is no interference be- 

ween the paths. Three genetic operators: crossover, mutation and 

 self-adaptive operator are used to create diversity in the popula- 

ion and form new offspring. The crossover operator uses a linear 

ombination of two individuals to form an offspring. The mutation 

perator reverses the priority values of randomly selected com- 

odities, transforming large priorities into smaller ones and vice 

ersa. Finally the self adaptation operator randomly selects a path 

rom an individual and tries to re-route a disconnected commod- 

ty by assigning new priority values to the nodes. The new priority 

cores are calculated using features such as path length and edge 

sage rates. 

.2.5. Message passing 

The Message Passing algorithm ( Mézard & Parisi, 2003 ) is a 

etaheuristic which has been applied to this problem in ( Altarelli 

t al., 2015 ). It is based on the Cavity Method which has been
3 
sed in other Combinatorial Optimisation problems. The Message 

assing algorithm draws inspiration from an incremental learning 

ethod with weighted matching problems solved to compute up- 

ates. For interested readers we encourage them to see the original 

aper ( Altarelli et al., 2015 ). 

.2.6. Two stage algorithm 

The Two Stage Algorithm as described in ( Martín et al., 2020 ) 

onsists of an Integer Linear Programming (ILP) solver being used 

o generate seed solutions for an Evolutionary Algorithm (EA). If 

he optimal solution is produced by the ILP solver, the process is 

erminated and the solution is reported. Each individual within the 

A population is represented by an array of size K, equaling the 

umber of commodities in the problem instances. For each com- 

odity k ∈ K, λ shortest paths are generated between the source- 

erminal node pair. To generate a new offspring, a crossover op- 

rator compares the current individual, the local best solution of 

hat individual, and the global best solution amongst the popula- 

ion and chooses the gene from one of these candidates using a 

oulette wheel strategy. A post-processing stage then takes places, 

s well as the updating of objective values for the individual, local 

est and global best solutions. 

.3. LaPSO background 

The Lagrangian Particle Swarm Optimisation (LaPSO) method 

as first described in ( Ernst, 2010; Ernst & Singh, 2012 ). The 

aPSO algorithm consists of a Wedelin inspired Lagrangian Relax- 

tion (LR) method embedded within a Particle Swarm Optimisa- 

ion (PSO) framework. This approach has proven to be successful 

n other combinatorial optimisation problems such as the Resource 

onstrained Machine Scheduling Problem ( Ernst & Singh, 2012 ), 

s well as the Degree-Constrained Minimum Spanning Tree Prob- 

em ( Ernst, 2010 ). In order to explain the workings of the LaPSO 

lgorithm, we give a brief background on Lagrangian Relaxation, 

edelin’s Algorithm and Particle Swarm Optimisation. For the full 

seudocode please refer to Algorithm 1 . 

.3.1. Lagrangian relaxation 

The inner method used in the LaPSO algorithm, known as La- 

rangian Relaxation (LR), is an exact technique that is commonly 

mplemented in the Operations Research (OR) community. LR arose 

rom the observation that some hard problems can be modelled as 

elatively easy problems with complicating constraints. For prob- 

ems of this nature, if these constraints were removed, the problem 

ould be much easier to solve. 

The basic form of the primal and Lagrangian dual problems for 

inary Linear Programs are shown in Eq. (1) and (2) respectively, 

here x are the decision variables, c are the associated costs, A and 

are the constraint matrix and resource constraints and λ are the 

agrangian Multipliers introduced. 

ax 
x 

f (x ) = c T x s.t. Ax ≤ b, x ∈ { 0 , 1 } n (1) 

in 

λ≥0 
LR (λ) = max 

x ∈{ 0 , 1 } n 
c T x + λT (b − Ax ) (2) 

ote that this can be extended in a straight forward way to the 

ase of Mixed Integer Programming. LR is carried out by relax- 

ng some of the constraints (or as presented here all of the con- 

traints) and shifting them to the objective function, with some 

enalty term (Lagrangian Multiplier) attached. Solving the new re- 

axed problem provides bounds for the solution qualities achiev- 

ble in the original problem. In many cases finding the optimal 

agrangian Multipliers and the tightest bounds are the main ob- 

ective when solving the relaxed problem. However, finding opti- 

al Lagrangian Multipliers can also result in finding good feasible 

olutions, as LR is essentially a penalty method. 
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Algorithm 1 MEDP LaPSO Algorithm. 

Require: Number of particles n 

Require: CPU Runtime Limit T 

Require: Velocity parameters ω, φ, δ > 0 

Require: α0 , β the initial value and update factor of α

1: Define global best λG = 0 , p G = 0 

2: Set initial perturbation and Lagrangian Multipliers for p i (λi , πi ) ∈ n : λi ∈ [0 , 0 . 1] , 

πi = 0 

3: Set initial velocities v i = 0 , w i = 0 

4: Set maxIter and LBC maxIter = 30 0 0 0 , LBC = 10 

5: for it er = 0 . . . maxIt er and while LB ≤ UB − ε do and while CPU() ≤ T 

6: for p i (λi , πi ) ∈ n do 

7: if iter mod LBC = 0 then // Lower Bound check 
8: Solve subproblem L (λi , 0) // using Dijkstra 

9: else 

10: Solve subproblem L (λi , πi ) // using Dijkstra 

11: end if 

12: Let x ′ be the optimal solution to theminimisation subproblem 

13: g ← b − Ax ′ // update subgradient g 

14: if L (λi , πi ) > LB then 

15: LB ← L (λi , πi ) 

16: else if LB i not improved for 10 iterations of particle p i then 

17: αi ← β αi // reduce step size 

18: end if 

19: if x ′ is not feasible then 

20: x ′ ← RepairHeuristic ( x ′ ) // repair solution 

21: end if 

22: if x ′ is feasible and ( ̄c x ′ < UB ) then 

23: UB ← ̄c x ′ // update best Upper Bound 

24: p G ← p i // update best particle 

25: end if 

26: Randomly generate numbers r G , r L ∈ [0 , 1] 

27: Update particle velocities v i , w i using Eq. (13) and (14) 

28: Update the particle positions using Eq. (15) and (16) 

29: end for 

30: end for 

m

h

f

t

n

t

i

t

t

b

d

o

p

a

w

f

o

h

l

r

2

p

o

u

s

o

i

o

W

t

t

i

s

d

c

s

0

a

l

c

T

w

i

a

a

c

a

I

f

a

o

m

d

m

t

o

s

f

t

g

2

h

m

m

t

a

t

c  

&

a

f

s

t

P

(

b

fi

U

s

t

i

h

o

(  

a

h

o

e

3

t

Whilst there are many techniques available to find the opti- 

al Lagrangian Multipliers, traditionally the most popular method 

as been sub-gradient optimisation ( Fisher, 1981 ). The Lagrangian 

unction is non-smooth. Hence while a gradient may not exist, 

he function always has a set of subgradients corresponding to the 

ormal vectors of a set of supporting hyperplanes at a point on 

he function’s level set. Subgradient optimisation uses an arbitrar- 

ly chosen subgradient of the Lagrangian function with respect to 

he current Lagrangian Multipliers, as a guide to update the mul- 

ipliers. A subgradient is given by the constraint violation, as can 

e seen in Eq. (2) , with alternative subgradients corresponding to 

ifferent optimal subproblem solutions when there are multiple 

ptima. Following the direction of the subgradient modifies the 

enalties such that it encourages more feasible solutions. Penalties 

re increased where the constraints are violated, and decreased 

here there is slack in the constraint. During this update process, 

easible solutions for the original problem may occur on their own, 

r most likely, “almost feasible” solutions can be found. A repair 

euristic is often then applied to repair these “almost feasible” so- 

utions, with this combination of LR and repair heuristic commonly 

eferred to as a Lagrangian heuristic. 

.3.2. Wedelin’s algorithm 

Because subgradient optimisation operates solely in the relaxed 

roblem space, there may exist situations such that even if the 

ptimal Lagrangian Multipliers are found, the solutions generated 

sing these variables may never be feasible in the original search 

pace ( Ernst, 2010; Ernst & Singh, 2012 ). To tackle this problem 

f potential infeasibility, the LaPSO algorithm loosely incorporates 

deas explored in Wedelin’s algorithm ( Wedelin, 1995 ), which was 

riginally developed for 0–1 combinatorial optimisation problems. 

edelin’s algorithm does not use a subgradient method to update 

he Lagrangian Multipliers. Instead, Wedelin’s algorithm updates 
4 
he Lagrangian Multipliers based on a coordinate ascent approach, 

teratively adjusting each Lagrangian Multiplier λi such that the 

olution x exactly satisfies the i th relaxed constraint of Ax ≤ b. It 

oes so by reformulating the LR in terms of the adjusted costs 

ˆ  = (c − λA ) and ensuring that at most b elements involved in con- 

traint i have negative reduced costs (assuming coefficients of A are 

–1). The solver can then easily choose which elements to set to 1, 

nd which to set to 0. This approach can work well for small prob- 

em instances, however for more difficult problems many adjusted 

osts converge to 0, and as a result no integer solution is found. 

o combat this, Wedelin also provides an approximation version, 

ith perturbation values as well as Lagrangian Multipliers affect- 

ng the adjusted variable costs. After each multiplier update, if the 

djusted variable cost was positive, a small positive perturbation is 

dded, and likewise a small negative value is added if the adjusted 

ost was negative. Over time, these perturbations help to break ties 

mongst the adjusted costs which would otherwise converge to 0. 

n a similar manner, the LaPSO algorithm biases variables in an ef- 

ort to break ties. It does so using previous best global solutions 

s the guiding mechanism. No attempt has been previously carried 

ut to use this approach on the MEDP problem. How this is imple- 

ented in the context of the MEDP problem is explained in more 

etail in Section 3.2 . 

Whilst the perturbation values are used in an effort to create 

ore feasible solutions, often without a repair heuristic the solu- 

ions created will still be infeasible. Hence Lagrangian methods rely 

n repair heuristics that modify an infeasible solution to the relaxed 

ubproblem, hopefully finding a similar solution which is feasible 

or the original problem. A good repair heuristic is often crucial 

o the performance of a Lagrangian heuristic. The repair heuristic 

enerated for the MEDP problem is discussed in Section 3.3 . 

.3.3. Particle swarm optimisation 

Particle Swarm Optimisation (PSO) is a longstanding meta- 

euristic originally presented in ( Eberhart & Kennedy, 1995 ). Like 

any other metaheuristics, PSO draws its inspiration from nature, 

imicking swarms found in nature, such as bird flocks. In most 

raditional PSO algorithms, particle velocity and position updates 

re carried out using a combination of local and global best solu- 

ions. In this sense the velocity and position updates of each parti- 

le in LaPSO is carried out in a similar manner as described in ( Shi

 Eberhart, 1998 ). Unlike the more typical PSO methods, the LaPSO 

lgorithm assigns two velocities and positions to each particle, one 

or the Lagrangian Multiplier space and one for the perturbation 

pace, further discussed in Section 3.4 . From a theoretical perspec- 

ive, the hybridisation of a Lagrangian Relaxation approach and the 

SO algorithm is based on the previous success of bundle methods 

 Hiriart-Urruty & Lemaréchal, 1993 ), which have been shown to 

e more effective than the subgradient optimisation algorithm for 

nding the optimal Lagrangian Multipliers ( Zhao & Luh, 2002 ). 

sing the PSO algorithm, we are effectively relying on multiple 

ubgradients to update the Lagrangian Multipliers, in particular 

he Lagrangian Multipliers found in the global best particle. This 

n theory should help avoid the oscillations between the different 

yperplanes in the Lagrangian Relaxation search space which can 

ften occur when using the subgradient optimisation technique 

 Zhao & Luh, 2002 ). As for the choice of using the PSO alogorithm

s opposed to other metaheuristic techniques, the PSO algorithm 

as previously shown fast convergence properties for continuous 

ptimisation problems ( Poli, Kennedy, & Blackwell, 2007 ), which is 

ssentially what the Lagrangian search space is. 

. Approach 

In this section we provide details regarding the implementa- 

ion of the LaPSO algorithm for the MEDP problem. This includes 
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Fig. 2. A visual represenation of the MEDP problem with LR applied and non- 

negative edge weights as decribed in (11) . This reformulated problem represents a 

series of independent shortest path problems for each Source/Terminal ( S i , T i ) node 

pairing with the Lagrangian Multipliers forming the edge weights. As described 

in (11) , if the shortest path for a commodity is > 1 , then the commodity is not 

routed through the network. 
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eformulating the MEDP problem as an Integer Programming (IP) 

roblem, applying a suitable Lagrangian Relaxation, creating a new 

epair heuristic, and embedding this all into the LaPSO framework. 

he MEDP LaPSO algorithm as seen in Algorithm 1 can be sum- 

arised as follows: 

1. Relax capacity constraints, add perturbations and reformulate 

the problem as a minimisation problem instead of a maximisa- 

tion one such that the MEDP problem is now a series of short- 

est path problems; 

2. Solve the shortest path problems using Dijkstra’s algorithm 

with a Priority Queue. Every t iterations temporarily set per- 

turbations to 0 in an effort to improve upon the Lower Bounds; 

3. If solutions generated are infeasible, apply a repair heuristic; 

4. Using the solutions and constraint violations found in solving 

the subproblems, update the Lagrangian and perturbation val- 

ues within the PSO framework. 

It is important to note that for the LaPSO algorithm shown 

n Algorithm 1 , the sub-problem is a minimisation problem and 

herefore the Lower Bounds (LB) represent solutions for the re- 

axed problem whilst the Upper Bounds (UB) represent feasible so- 

utions for the original MEDP problem. This is in contrast with the 

ounds discussed in Section 4 which are referring to the original 

EDP formulation which is a maximisation problem. This discrep- 

ncy arises because we transform the MEDP problem into a min- 

misation problem in the LaPSO framework, however, we present 

ur results in the context of the original maximisation problem. 

.1. IP Formulation and Lagrangian Relaxation 

In order to apply a Lagrangian Relaxation to the MEDP problem, 

e need to reformulate it as an IP problem as shown in Eq’s. (3) -

7) formulation. In this formulation S represents the set of source 

odes, T is the set of terminal nodes, K is the set of commodi- 

ies and E is the set of all edges within the network. The MEDP 

roblem is similar to a network flow problem with flow constraints 

hown in (4) - (5) , capacity constraints (6) and binary constraints 

7) . 

Note that, while this could in principle be solved by a generic 

ixed Integer Programming (MIP) solver, these tend to perform 

adly because it is an NP hard problem and the formulations 

et quite large in both the number of variables and constraints 

 | E| × | K| and | V | × | K| ). Results generated using a generic MIP

olver are shown in Section 4 . 

ax 
∑ 

k ∈ K 

∑ 

j :(s k , j ) ∈ E 
x s k jk (3) 

∑ 

j :(i, j ) ∈ E 
x i jk −

∑ 

j:( j,i ) ∈ E 
x jik = 0 ∀ k ∈ K, i ∈ V \ { s k , t k } (4) 

∑ 

j :(s k , j ) ∈ E 
x s k jk ≤ 1 ∀ k ∈ K (5) 

 

k ∈ K 
(x i jk + x jik ) ≤ 1 ∀ (i, j) ∈ E : i < j (6) 

 i jk = { 0 , 1 } (i, j) ∈ E, k ∈ K (7) 

We then relax capacity constraints (6) using Lagrangian Multi- 

liers λ ≥ 0 , to obtain the following Lagrangian objective, where F
s the set of feasible solutions to constraints (4), (5) and (7) (and F k 

he corresponding subspace for commodity k ∈ K since F is sepa- 

able by k ). For the following, let Ē = { (i, j) ∈ E : i < j} . 
in 

λ≥0 
LR (λ) = max 

x ∈F 

∑ 

k ∈ K 

∑ 

(s k , j) ∈ E 
x s k jk + 

∑ 

(i, j) ∈ ̄E 
λi j 

(
1 −

∑ 

k ∈ K 
(x i jk + x jik ) 

)
(8) 
5 
= 

∑ 

(i, j) ∈ ̄E 
λi j + max 

x ∈F 

{ ∑ 

(s k , j) ∈ E 
x s k jk (1 − λs k j 

) −
∑ 

k ∈ K 

∑ 

(i, j) ∈ ̄E ,i 	 = s k 

λi j x i jk 

} 

(9) 

= 

∑ 

(i, j) ∈ ̄E 
λi j −

∑ 

k ∈ K 

{ 

min 

x k ∈F k 

∑ 

(s k , j) ∈ E 
(λs k j 

− 1) x s k jk + 

∑ 

(i, j) ∈ ̄E ,i 	 = s k 

λi j x i jk 

} 

(10) 

he last step follows as each of the path problems for k ∈ K are 

ndependent and minimising the negative of the cost is the same 

s maximising. Now for each commodity k we essentially have two 

hoices: not routing the commodity through the network (in which 

ase x i jk = 0 for all (i, j) ∈ E) or alternatively, if a path is selected

or some commodity k then there is a contribution of one to the LR 

alue (from the fact that 
∑ 

j x s k jk = 1 ) and we subtract the shortest 

ath costs with respect to the λi j ’s. 

This demonstrates that the Lagrangian function can be com- 

uted using as a series of shortest path calculations using the 

quation 

in 

λ≥0 
LR (λ) = 

∑ 

(i, j) ∈ E 
λi j + | K| − ∑ 

k ∈ K 
min 

{
1 , min 

s k −t k path P k 

∑ 

(i, j) ∈ P k 
λi j 

)
(11) 

ere the inner minimisation is simply to find a shortest path in the 

ndirected path between source-terminal pair (s k , t k ) using edge 

osts given by the Lagrange multiplier λ. This new reformulation 

an be seen visually in Fig. 2 . Since λ ≥ 0 these shortest path prob-

ems can easily be solved for example with Dijkstra’s algorithm, 

ithout needing to cater for the posibility of negative cost cycles. 

t is also obvious that while LR (λ) calculates an upper bound for 

ur maximisation problem, the calculation is effectively equivalent 

o finding a lower bound on the problem of minimising the num- 

er of commodities for which no arc disjoint path can be found. 

.2. Perturbations 

When solving the series of shortest paths subproblems, within 

he network there may exist multiple paths connecting the same 

ode pair with similar lengths as shown in Fig. 3 . Despite paths 

aving similar lengths, when solving the shortest path subproblem 

sing Dijkstra’s algorithm, all commodities sent between a node 
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Fig. 3. An example showing the usefulness of the perturbation variables. Each com- 

modity k ∈ K has it’s own unique perturbation value for each edge, biasing com- 

modities to use specific edges and routes which were found in good historical solu- 

tions. This enables different commodities to take different routes which would oth- 

erwise not be possible using only the Lagrangian Multipliers as edge weights. In this 

example, without any perturbation variables, all commodities routed through nodes 

1 → 4 would use the same edges as a result of solving the shortest path problem. 

This choice of path necessitates that all solutions would be infeasible, if multiple 

commodities are routed through this section of the network. Using perturbation 

values, if alternative edges with similar costs (Lagrangian Multpliers) are available, 

these perturbation variables are used to bias commodities into using these alterna- 

tive edges if historically this resulted in producing a good solution. 
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air will traverse the same shortest path, resulting in edge vio- 

ations and infeasible solutions. To avoid this, we introduce per- 

urbation variables in a similar manner to Wedelin’s algorithm as 

escribed in Section 2.3.2 . These perturbation variables bias com- 

odities to be routed along unique paths, helping to avoid infeasi- 

le solutions. Note that these perturbation values are small in re- 

ation to the Lagrangian Multipliers as to not negatively affect the 

ound quality and the Lagrangian Multiplier updates. 

We assign a small perturbation variable to each commodity- 

dge pairing, πi jk , as shown in Fig. 3 . Referring to Fig. 3 , let

ath 1 be represented by edges {(1,2),(2,4)} and Path 2 by edges 

(1,3),(3,4)}. If values λ12 + λ24 are similar, but slightly smaller 

han λ13 + λ34 , all commodities routed through this section of the 

etwork will always be routed across Path 1, leading to infea- 

ible solutions. By changing the perturbation values commodity- 

dge pairing, we can bias commodities to take different paths than 

hey would if only the Lagrangian Multipliers were used as edge 

eights. These perturbation values are updated using historical so- 

utions as a guide. Previous solutions provide insight surrounding 

he relationship between commodities using particular edges and 

verall solution quality. This can be used to bias commodities to 

avour particular edges, where previously this has lead to good 

uality solutions. Some randomness is also included in the update 

rocedure, to create a balance between exploration and exploita- 

ion. The perturbation values are updated using information from 

he current globally best feasible solution, as shown in Eq. (14) in 

ection 3.4 . 

After introducing these perturbation variables, we reformulate 

he relaxed objective function to that as shown in Eq. (12) . We 

hen apply the same process described in Section 3.1 to transform 

his problem into a series of independent shortest path problems. 

ecause we have added in these artificial perturbation values, our 

ew objective function does not give us the true bounds for the 

riginal problem. We would have to subtract all perturbation val- 

es which are used in the paths generated. Instead of keeping track 

f all perturbation values used, we simply assume the worst case 

cenario and subtract the maximum perturbation value n times, 

here n represents the number of edges in the problem. 

in 

λ≥0 
LR (λ, π) = max 

x 

∑ 

k ∈ K 

∑ 

(s k , j) ∈ E 
x s k jk (1 − λs k j 

− πs k jk 
) 

−
∑ 

k ∈ K 

∑ 

(i, j) ∈ E,i / ∈ s 
(λi j + πi jk )(x i jk + x jik ) 

− n max 
i jk 

(πi jk ) + 

∑ 

λi j (12) 
(i, j) ∈ E d

6 
.3. Repair heuristic 

When repairing solutions in the MEDP problem, we can it- 

ratively remove routed commodities until a feasible solution is 

ound. At the same time a commodity’s path is removed, we try 

o find an alternative path for the commodity, using only available 

dges. There are therefore two decisions to be made using this ap- 

roach: (1) In what order should commodities be removed in and 

2) How do we find new paths for these commodities. We inves- 

igated three different repair heuristics for the MEDP problem. We 

ave labelled these methods Random ( Rand ), Largest Violation Arbi- 

rary ( LVA ) and Largest Violation Perturbation ( LVP ). For all heuris- 

ics, to try and find a new feasible path for a commodity, Dijkstra’s 

lgorithm is re-run using the edge weights as described in each 

euristic. 

.3.1. Rand 

In the first approach Rand , we randomly select which commodi- 

ies should be removed. Once a commodity is removed, we try 

nd find an alternative shortest path for the commodity using only 

vailable edges. We arbitrarily set the weight of each edge to one, 

eaning no edge is biased more than any other. 

.3.2. LVA - Largest Violation Arbitrary 

In the second approach LVA , we iteratively remove commodities 

ith the largest number of edge violations contained within the 

ath. We then try and reconnect these commodities again using 

rbitrary edge weights assigned to available edges. 

.3.3. LVP - Largest Violation Perturbation 

The final repair heuristic explored is LVP which iteratively re- 

oves commodities with the largest number of violations, and at- 

empts to reconnect them using the perturbation values as edge 

eights. Again only edges which are available are considered. The 

otential advantages of using the perturbations to guide the re- 

air heuristic is something which has previously not been ex- 

lored. The perturbations used in the LaPSO algorithm are essen- 

ially learned values, influenced by past best solutions. This results 

n commodity paths converging to specific edges which were found 

o be highly beneficial in previous solutions. It results in more ex- 

loitation of promising solutions as the perturbation values are up- 

ated over time. Because perturbations can be negative, we have 

hifted all perturbations up to ensure no negative edge weights ex- 

st when solving our shortest path problems. Whilst the paths now 

olved do not represent true shortest paths, for our purposes this is 

cceptable. 

.4. Particle swarm optimization implementation 

The velocity and position update procedure used in the LaPSO 

s as follows: 

 i ← ω v i + r L αi 

UB − LB i 

|| g i || 2 g i + r G φ( λG 
i − λi ) (13) 

 i ← ω w i + r G φ( πG 
i − πi ) + δr G φ(1 − 2 x G i ) (14) 

i ← λi + v i (15) 

i ← θπi + w i (16) 

As mentioned previously, λ and π represent the dual and per- 

urbation vectors, with v and w representing their velocities re- 

pectively. r G and r L both represent random variables uniformly 

istributed between [0,1]. ω is the velocity factor representing the 
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Table 1 

Quantitative measures of experimental Dataset 1 ( Blesa & Blum, 2007 ). 

Graph | V | | E | Min Deg. Max Deg. Ave Deg. Diam. 

graph3 164 370 1 13 4.51 16 

graph4 434 981 1 20 4.52 22 

AS-BA.R-Wax.v100e190 100 190 2 7 3.8 11 

AS-BA.R-Wax.v100e217 100 217 2 8 4.34 13 

bl-wr2-wht2.10–50.rand1 500 1020 2 13 4.08 23 

bl-wr2-wht2.10–50.rand2 500 1020 2 11 4.08 27 

bl-wr2-wht2.10–50.sdeg 500 1020 2 14 4.08 28 

mesh15x15 225 420 2 4 3.73 28 

mesh25x25 625 1200 2 4 3.84 48 
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Table 2 

Quantitative measures of experimental Dataset 2 ( Pham et al., 2012 ). 

Graph | V | | E | Ave Deg. 

bl-wr2-wht2.10–50.rand 500 1020 4.08 

bl-wr2-wht2.10–50.sdeg 500 1020 4.08 

mesh15x15 225 420 3.73 

mesh25x25 625 1200 3.84 

steinb4 50 100 4.00 

steinb10 75 150 4.00 

steinb16 100 200 4.00 

steinc6 500 1000 4.00 

steinc11 500 2500 10.00 

steinc16 500 12,500 50.00 

planar-n50 50 135 5.4 

planar-n100 100 285 5.7 

planar-n200 200 583 5.83 

planar-n500 500 1477 5.91 

Table 3 

Quantitative measures of experimental Dataset 3 . 

Graph | V | | E | Min Deg. Max Deg. Ave Deg. 

easy_2_1 1000 3869 1 7 3.87 

easy_2_2 1000 3921 2 6 3.92 

easy_3_1 1500 5999 1 7 4.00 

easy_3_2 1500 5984 2 6 3.99 

easy_4_1 2000 7929 1 7 3.96 

easy_4_2 2000 7962 2 6 3.98 

easy_5_1 2500 10,048 1 7 4.02 

easy_5_2 2500 10,114 2 6 4.05 

Hard-small 500 1544 2 6 3.09 

Hard-med 1000 3051 2 7 3.05 

Hard-large 1500 4562 2 5 3.04 
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1 These instances and the python source code used to generate them can be 

found at https://github.com/Jakew103/MEDP _ EJOR . 
nertia of each particle. φ is the global factor, and influences the 

ffect that the global best solution has on each velocity. θ updates 

he perturbation values to ensure they do not grow too large, and 

s set to 0.5 as recommended in ( Wedelin, 1995 ). 

.4.1. Lagrangian search space 

The Lagrangian Multipliers are updated with a local component 

subgradient optimisation) and a global component. The local com- 

onent is simply a standard subgradient update step with g rep- 

esenting the subgradient of the LR function (the amount of con- 

traint violation b − Ax ), UB and LB representing the globally best 

pper Bound and the locally best Lower Bound respectively. αi is 

he Subgradient Multiplier, which is initialised as a parameter and 

s halved every 10 consecutive iterations where the LB is not im- 

roved. λi 
G 

are the Lagrangian Multipliers used in the global best 

B solution. 

.4.2. Perturbation search space 

The perturbation update procedure is influenced through only 

he global solutions. πG 
i 

are the perturbation values belonging to 

he global best solution. The (1 − 2 x G 
i 
) term adds a small positive 

ias to variables which are 0 in the global best solution, and adds 

 small negative bias to variables which are 1 in the global best so- 

ution. This biasing helps to ensure different commodities have dif- 

erent costs associated with each edge, increasing the chance that 

ommodities do not share the same edge when routed through 

he network. Whilst the perturbation search space is larger than 

he Lagrangian search space, any feasible solution for the original 

roblem can be found, something which would not be possible if 

nly the smaller Lagrangian search space is relied on. δ is the Per- 

urbation Factor which controls the size of the perturbations. 

. Experiments and results 

Numerous experiments were designed to address: parameter 

uning, perturbation analysis, comparative Upper Bound methods, 

epair heuristic selection and state-of-the-art benchmark compar- 

sons. 

The experiments were carried out using the Datasets described 

n ( Blesa & Blum, 2007 ), ( Pham et al., 2012 ) and our synthetically

enerated instances. We refer to these Datasets as Set 1, Set 2 and 

et 3 respectively. A summary of these datasets can be seen in 

able 1 , Table 2 and Table 3 respectively. For each graph in Set 1,

here exists 20 different instances for 0.1 | V | , 0.25 | V | and 0.40 | V |
ommodities totalling 540 problem instances. In Set 2, for graphs 

lrand, blsdeg, mesh15x15 and mesh25x25 there exist two differ- 

nt instances for 0.1 | V | , 0.25 | V | and 0.40 | V | commodities. For

he rest of the graphs, there exist 1 instance for 0.1 | V | , 0.25 | V |
nd 0.40 | V | commodities. In total Set 2 contains 54 different prob-

em instances. 

For the newly generated instances, we use the pyrgg software 

ool as described in ( Haghighi, 2017 ) to create what we have 
7 
abelled “easy” and “hard” graph instances. 1 For the easy instances 

e attempted to recreate larger problem sizes with similar char- 

cteristics to the most difficult graphs found in Datasets 1 and 2. 

hese difficult graphs were graph4, mesh25x25 and steinc6. The 

haracteristics of these graphs displayed average degrees close to 

, which seemed to result in a reasonable level of difficulty when 

olving the MEDP problem. Whilst creating graphs with larger 

verage degrees might result in larger problems in terms of both 

ariable and constraint numbers, for path finding heuristic based 

echniques, these instances appear to be too easy to solve, with 

ultiple paths available to produce optimal solutions. This can 

e seen in the results for the steinc16 instances in Table 6 . We

herefore created instances with average degrees close to 4, with 

arying minimum and maximum degrees. To test the limits of the 

aPSO method, we created graph sizes for the “easy” instances 

ontaining between 10 0 0 and 250 0 vertices, far larger than any 

f the previous graphs tested. For each graph, we created 0.4 | V | 
ommodities, commonly referred to as Origin Destination (OD) 

https://github.com/Jakew103/MEDP_EJOR


J. Weiner, A.T. Ernst, X. Li et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; January 19, 2021;11:13 ] 

p

a

i

c

1

i

a

p

c

e

a

t

d  

c

o

o

i

t

p

i

r

u

S

t

s

c

p

B

1

s

B

a

t

S

v

w

i

r  

t

a

p  

t

t

D

I

t

a

c

m

o

t

a

4

T

r

E

Table 4 

Parameter tuning. 

Parameter Tuning Domain Value Chosen 

Velocity Factor - ω {0.01,0.05,0.1,0.5} 0.1 

Global Factor - φ {0.01,0.05,0.1,0.2,0.3} 0.05 

Subgradient Factor - αi {1.5,2,3,3.5,5} 2 

Perturbation Factor - δ {0.01,0.05,0.1,0.5} 0.5 

Swarm Size - p {1,8,16,32,64,96} 8 
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airs, in line with the most difficult instances found in Datasets 1 

nd 2. 

To generate the “hard” graphs, we used a clustering approach 

n order to create instances in which some commodity OD pairs 

annot be connected. To do so, we created 10 clusters of sizes 50, 

00 and 150 vertices for the hard-small, hard-med and hard-large 

nstances respectively. To make the instances more challenging, we 

lso reduced the average degree for each graph, resulting in less 

aths available to transport each commodity. A single edge was 

reated to link each cluster pairing, resulting in 45 inter-cluster 

dges in total. To generate the commodity OD pairs, we gener- 

ted both intra-cluster and inter-cluster OD pairs. For each clus- 

er, we generated 0.5 | V | intra-cluster OD pairs, more than previous 

atasets which had been limited to 0.4 | V | . We then created 5 inter-

luster OD-pairs for each cluster pairing, knowing at most only 45 

ut of the 225 inter-cluster pairs could ever be successfully routed. 

Parameter tuning and repair heuristic testing were carried out 

n Set 1, using one instance from each graph and commodity pair- 

ng, totalling 27 problem instances. These instances were run mul- 

iple times, providing a useful statistical analysis of the results. For 

erturbation analysis and comparative Lagrangian methods, all 540 

nstances from Set 1 were tested. For comparisons with the cur- 

ent state-of-the-art benchmarks, all 540 instances from Set 1 were 

sed, as well as all 54 instances from Set 2. Each instance from 

et 1 was run once, and each instance from Set 2 was run twenty 

imes in accordance with the previous experiment designs as de- 

cribed in ( Blesa & Blum, 2007; Pham et al., 2012 ). 

Parameter tuning, repair heuristic selection and Upper Bound 

omparisons were carried out using a Intel(R) Core(TM) i7-7500U 

rocessor. The Mixed Integer Programming solver used for Upper 

ound comparisons and heuristic solution benchmarking is CPLEX 

2.8.0. CPLEX was run using the default solver settings. The LaPSO 

ource code was written in C++ and compiled with gcc 5.4.0. 2 For 

enchmark testing, the Multi-modal Australian ScienceS Imaging 

nd Visualisation Environment (MASSIVE) network was used due 

o the large computational time required. Tests run on the MAS- 

IVE network were done using either a Intel Xeon CPU E5-2680 

3 processor or an Intel Xeon Gold 6150 processor depending on 

hich processor was available at the time. In all benchmark exper- 

ments for Datasets 1 and 2, runs were limited by the CPU times 

eported in either ( Blesa & Blum, 2007 ) or ( Pham et al., 2012 ), with

he CPU time limit belonging to the method displaying the best 

verage solution value in ( Blesa & Blum, 2007 ) and 30 minutes 

er instance in ( Pham et al., 2012 ) for consistency with the litera-

ure. This CPU limitation is important to keep in mind, as it affects 

he parameter values chosen. For the larger instances created in 

ataset 3, the CPU runtime was limited to one hour per instance. 

t should also be noted that whilst the CPU time is a limiting fac- 

or amongst all algorithms, LaPSO is able to run on parallel CPU’s, 

ffecting wall clock runtimes. Whilst this measurement is not offi- 

ially tested, it is an additional benefit of the LaPSO algorithm. 

It is also important to note that in this section any references 

ade to Lower Bounds are referring to primal solutions for the 

riginal MEDP problem, whilst Upper Bounds refer to solutions for 

he relaxed problem. In addition, any optimality gaps referenced 

re calculated as 100 × (1 − LB 
UB ) . 

.1. Parameter tuning 

We ran experiments to tune the five key parameters shown in 

able 4 that significantly affect the performance of the LaPSO algo- 

ithm. Swarm size was first tested, ranging from a single particle 
2 The LaPSO source code can be found at https://github.com/Jakew103/MEDP _ 

JOR . 

o

o  

8 
o a swarm size of 96 particles. We tested swarms with multiples 

f 4 particles, simply because the LaPSO algorithm is implemented 

o run 4 particles in parallel across 4 CPUs. Shown in Fig. 4 are

he convergence plots captured for the different swarm sizes. The 

est was carried out on one instance from each graph-commodity 

air from Set 1, totalling 27 instances. As can be seen, the best 

esults arise using a population of 8 particles. Looking at the con- 

ergence plots, the single particle suffers from premature conver- 

ence, with the average particle Lower Bound stagnating around a 

ocal optimum. On the other end of the spectrum, the 96 particle 

warm also performs poorly. This is attributed to the large swarm 

nly being able to complete fewer iterations. The limited number 

f iterations is a result of a fixed CPU time allowed for each in- 

tance in accordance with those reported in ( Blesa & Blum, 2007 ). 

or some problem instances, when a larger swarm size was used, 

 single iteration was unable to be completed as the set-up time 

or LaPSO was longer than the CPU time limit. The plots shown in 

ig. 4 are limited to 130 iterations to allow for easier comparisons, 

owever it should be noted that the single particle was able to 

erform hundreds of iterations for some instances within the CPU 

ime limit. 

For the other 4 parameters - Velocity Factor, Global Factor, Sub- 

radient Factor and Perturbation Factor, the iRace package ( López- 

báñez, Dubois-Lacoste, Cáceres, Birattari, & Stützle, 2016 ) was used 

or tuning. Again the same 27 instances were used for tuning. 

hese instances vary in both problem size and complexity, avoiding 

ny overtraining that might occur. Due to the number of instances, 

nd the CPU time required by some of the large instances, only 

 limited domain was tested for the parameters. This domain was 

ased around previously successful parameter choices as described 

n ( Ernst, 2010; Ernst & Singh, 2012 ). The final elite-configuration 

iven for the parameter choices is shown in Table 4 . 

.2. Repair heuristic 

The different repair heuristics, Rand , LVA and LVP were run 20 

imes each across a single instance from each graph-commodity 

air from Set 1, totalling 27 instances. Multiple tests were run to 

ccount for the stochastic nature of the repair heuristics and LaPSO 

lgorithm. 

Comparing the three repair heuristics Rand , LVA and LVP as 

hown in Fig. 5 , it is clear that the LVP heuristic produces the best

esults. We can see from the results that removing commodities 

ased on their violations rather than in a random fashion, reduces 

he spread of results. This is to be expected, because we are re- 

oving a large random component from the heuristic. The biggest 

hange however comes from using the perturbation variables as 

dge weights to guide the repair heuristic, as opposed to arbitrary 

alues. This shows that the perturbation variables are converging 

o promising values which can be useful for such repair heuristics. 

.3. Perturbation analysis 

We carried out experiments to understand better the effects 

f the perturbation values used, something which has not previ- 

usly been done ( Ernst, 2010; Ernst & Singh, 2012 ). To do so we

https://github.com/Jakew103/MEDP_EJOR
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Fig. 4. Swarm Size behaviour analysis. Results from the 27 test problem instances, showing the sum of the best Lower Bound for different swarm sizes. 

Fig. 5. Repair Heuristic comparisons. The results for each repair heuristic is shown in the form of a boxplot, using totals of the best Lower Bounds across all problem 

instances in each run. 540 problem instances were tested in total, running each of the 27 test problem instances 20 times. 
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c

ested all problem instances from Set 1 and Set 2 using the full 

aPSO algorithm (Normal Perturbations), the LaPSO algorithm us- 

ng the perturbation values only in the repair heuristic (Limited 

erturbations) and the LaPSO algorithm using no perturbation val- 

es at all (No Perturbations). The results from these tests can be 

een in Fig. 6 . These tests allow us to see the effect of the pertur-

ations in the subproblem solver by comparing Normal Perturba- 

ions and Limited Perturbations methods. We can also further see 

he effect of the perturbation variables in the repair heuristic by 

omparing the Limited Perturbations and No Perturbations meth- 
9 
ds. These experiments show that the perturbation variables are 

elpful in both the subproblem solver and repair heuristic with- 

ut degrading the quality of the Upper Bounds generated. Whilst 

ot necessarily the most important factor in performance, the av- 

rage number of iterations able to be completed within the same 

untime is influenced by the use of the perturbation variables. 

his is because the solutions generated are closer to being feasi- 

le and require less work to be carried out by the repair heuristic 

fewer calls on average to Dijkstra’s method to attempt to reroute 

ommodities). 
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Fig. 6. Perturbation Analysis comparing three methods - LaPSO with normal perturbation usage (Normal Perturbations), LaPSO without any perturbation values (No Pertur- 

bations) and LaPSO with using the perturbations only in the Repair Heuristic (Limited Perturbations). The graph on the left plots the sum of Lower Bounds against iteration 

number while the graph on the right plots the sum of the Upper Bounds for the same set of runs summed across all 540 instances tested. 
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.4. Upper bound comparisons 

Both a MIP solver (CPLEX) and the Lagrangian Relaxation based 

olume algorithm were used to test the quality of the Upper 

ounds that LaPSO is able to produce. In theory any MIP solver 

ould be used to produce good quality Upper Bounds, however for 

arge scale problems it is unable to do so in a reasonable amount 

f time. For the Maximum Edge Disjoint Path problem, because 

he integer solutions to the subproblems we have generated are 

he same as what can be achieved by a LP relaxation of the sub- 

roblems, the bounds produced by our Lagrangian based method 

ill never be better than the optimal LP bounds. However, again 

or larger problem instances, the MIP solvers are most often un- 

ble to find the optimal solution, or even a good solution to the 

P relaxation within a reasonable amount of time. To ensure that 

e obtain a valid upper bound even if the LP solver does not fin- 

sh within the time limit, we used the dual simplex method. This 

s the default method used by CPLEX for these types of problems 

when run with a single thread) and has the advantage that at 

very point during the running of the algorithm a feasible dual 

olution is available that provides a valid upper bound. We have 

lso included the Volume algorithm ( Barahona & Anbil, 20 0 0 ) for

omparison to compare the bounds generated by LaPSO with a 

ore traditional Lagrangian based method. The implementation is 

ased on the COIN-OR 

3 implementation and the same approach for 

olving subproblems and heuristic repair method as in the LaPSO 

ethod. 

We tested the five largest non-trivial problem instances 

vailable with 10 samples taken during each run at CPU 

imes ranging from 90 seconds to 900 seconds. The instances 

ested include: bl-wr2-wht2.10–50.rand, bl-wr2-wht2.10–50.sdeg, 

esh25x25, planar-n500 and steinc6. For the LaPSO algorithm, 

0 runs were carried out to account for the stochastic proper- 

ies of the algorithms. The results for these tests can be seen 

n Fig. 7 . LaPSO clearly performed the best of the three meth- 

ds tested, producing the tightest bounds in the limited CPU time 

vailable. We expect this trend to continue and be exaggerated 

ven more as the problem sizes increase. As seen in Fig. 7 , the

ual simplex method is unable to make any significant progress 

or some of the instances, because the problems are extremely 

egenerate. In the worst performing example, the planar-n500 
3 Available from https://projects.coin-or.org/Vol . 

b

t

e

e

10 
nstance, we observed CPLEX spending the whole 900 seconds 

aking over 140,0 0 0 successive degenerate pivots with no im- 

rovement to the bound from the value found with the initial 

asis. Similar extended periods of stagnation with over 10 0,0 0 0 

egenerate pivots could be observed in most of the other test 

nstances. 

Given enough time, the MIP solver will eventually produce the 

ightest bounds once the optimal LP solution is found, however 

his is likely to occur only after larger runtimes. Its usefulness in 

uture MEDP problem testing is therefore dictated by the available 

PU time for the problem at hand. 

.5. Benchmark testing 

For benchmark testing we ran the LaPSO algorithm using the 

arameter choices shown in Table 4 as well as the LVP re- 

air heuristic. We ran the LaPSO algorithm and CPLEX solver 

nce for each of the 540 problem instances in Set 1, and 20 

imes for each of the 54 problem instances in Set 2, in line 

ith what was carried out in previous papers. Whilst this test- 

ng procedure was carried out in previous papers, for future 

ork we recommend additional runs for Set 1 to account for 

he stochastic nature that is present in many of the benchmark 

lgorithms. 

For Datasets 1 and 2, we have split up the analysis into two 

arts. In part one LaPSO is compared with methods in the liter- 

ture for which a reasonable comparison is able be carried out. 

hese include current benchmark methods MSGA, ACO, LS-R and 

S-SGA as described in ( Blesa & Blum, 2007 ) and ( Pham et al.,

012 ). We have also included a stand alone MIP solver, CPLEX 

2.8.0 for benchmarking purposes. 

Part two contains methods for which there is less confidence in 

he validity of the comparison, either because in the literature only 

imited test results could be found, or because the results were ac- 

ompanied by incomplete information about how testing was car- 

ied out. 

Finally, for our own synthetic Dataset created, we ran the LaPSO 

lgorithm and CPLEX solver 20 times for the 11 newly created 

raphs and pairs files. We provide statistical measures, including 

oth primal and dual solution benchmarks. We are hopeful that 

hese newly created graphs will allow future researchers to test the 

ffectiveness of their methods on harder instances than currently 

xist within the literature. 

https://projects.coin-or.org/Vol
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Fig. 7. Upper Bound Comparisons. Testing the five largest non-trivial instances from Datasets 1 and 2 using a MIP solver (CPLEX), LaPSO and a Volume algorithm (Vol). The 

Upper Bounds from each instance are summed up at 10 sample times, ranging from 90 to 900 CPU seconds. For LaPSO, 30 runs were completed to account for stochastic 

properties of the algorithm. 

Fig. 8. Optimality Gap Comparisons. Optimality gaps calculated using the average Lower Bounds (from the heuristics) and Upper Bounds (from LaPSO) for the 20 different 

instances and each of the 27 graph-commodity pairs in Dataset 1. Optimality gaps are plotted in descending order for each method. The Instances axis does not refer to a 

specific instance, instead it is the index in the ordered sequence. 
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.6. Set 1 - Comparable methods 

LaPSO achieves outright state-of-the-art primal solution quali- 

ies for 16 out of the 27 commodity-graph pairs. Whilst the LaPSO 

ethod shows a higher average objective value across many of 

he problem instances, the small differences for the easier prob- 

ems are not considered as significant, and could simply be at- 

ributed to the random nature that the different algorithms dis- 

lay. As the ACO method is generally superior to MSGA and CPLEX, 

 two tail t -test was carried out to compare the LaPSO and ACO 

ethods. For the larger graphs such as graph4, mesh15x15 and 
11 
esh25x25, especially with the larger commodity instances, the 

aPSO method significantly outperforms the ACO method. There is 

 statistically significant difference (p value ≤0.05) for 10 out of 

he 27 commodity-graph pairs tested. For the rest of the instances, 

ost are almost able to be solved to optimal by both ACO and 

aPSO, indicating these instances are relatively trivial to solve. 

The LaPSO method is able to prove optimality on just over 47% 

f the problem instances. LaPSO achieves the lowest average op- 

imality gap across all instances with 4.40%, compared with ACO, 

SGA and CPLEX reporting average gaps of 8.63%, 13.86% and 

0.64% respectively. A gap ranking comparison is shown in Fig. 8 . 
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Table 5 

Comparison results of the three methods MSGA, ACO, CPLEX and LaPSO for Dataset 1. The first column graph describes the graph structure used, with the ODs column 

describing the number of commodities to be transported for all runs from ( Blesa & Blum, 2007 ). q̄ represents the average objective value over the 20 different problem 

instances for each graph and commodity pairing. std represents the standard deviation of the objective values, whilst t̄ represents the average CPU runtime taken to find 

the best solution within each instance. The best q̄ are bolded to show the best average objective value between the MSGA, ACO, CPLEX and LaPSO methods. The Optimal 

column shows what proportion of instances were provably optimal when using the Upper Bounds found during the LaPSO algorithm. The final column “t -test” shows the 

two tailed t and p values used to compare the ACO and LaPSO methods. 

Graph ODs MSGA ACO CPLEX LaPSO 

q̄ std t̄ q̄ std t̄ q̄ std t̄ q̄ std UB t̄ Optimal t -test (t, p ) 

AS-BA.R-Wax.v100e190 10 9.10 0.94 0.58 8.95 0.97 0.61 8.60 2.18 2.29 9.10 0.94 9.20 0.02 0.90 (-0.58,5.68E-1) 

AS-BA.R-Wax.v100e190 25 14.25 1.37 4.81 14.85 1.20 3.72 14.50 3.15 4.20 15.30 1.27 15.65 0.37 0.65 (-1.20,2.37E-1) 

AS-BA.R-Wax.v100e190 40 17.95 1.62 7.80 19.45 1.94 4.12 16.85 7.10 5.37 20.20 2.11 21.55 1.37 0.20 (0.00,1.00E + 0) 

AS-BA.R-Wax.v100e217 10 8.05 0.92 0.43 7.88 0.93 0.16 6.55 3.04 2.32 8.05 0.92 8.20 0.02 0.85 (-0.68,5.02E-1) 

AS-BA.R-Wax.v100e217 25 13.60 1.46 4.33 13.83 1.58 1.82 13.55 3.22 3.31 14.20 1.44 14.45 0.18 0.75 (-0.90,3.72E-1) 

AS-BA.R-Wax.v100e217 40 17.00 1.95 9.83 17.80 1.65 2.21 15.25 6.14 4.02 18.15 1.80 20.75 0.37 0.05 (-0.43,6.65E-1) 

bl-wr2-wht2.10–50.rand1 50 22.55 2.40 318.52 24.10 1.95 155.90 24.40 2.13 22.04 24.40 2.13 24.40 2.04 1.00 (-0.74,4.61E-1) 

bl-wr2-wht2.10–50.rand1 125 38.10 4.37 1004.46 42.30 4.54 344.09 42.45 4.42 86.62 42.45 4.42 42.50 13.42 0.95 (-0.12,9.03E-1) 

bl-wr2-wht2.10–50.rand1 200 50.85 4.89 1151.20 56.30 5.25 847.41 57.10 5.47 217.88 57.10 5.47 57.20 131.93 0.90 (-0.52,6.08E-1) 

bl-wr2-wht2.10–50.rand2 50 23.85 2.78 187.17 25.25 2.70 79.43 25.45 2.60 26.37 25.45 2.60 25.45 2.15 1.00 (-0.28,7.83E-1) 

bl-wr2-wht2.10–50.rand2 125 40.10 5.07 674.61 43.70 5.20 143.35 44.05 5.33 96.20 44.05 5.33 44.85 10.54 0.45 (-0.24,8.08E-1) 

bl-wr2-wht2.10–50.rand2 200 54.50 4.68 1009.07 59.30 4.81 720.25 60.20 5.34 193.04 60.20 5.34 60.50 146.17 0.75 (-0.65,5.18E-1) 

bl-wr2-wht2.10–50.sdeg 50 22.55 2.65 208.49 24.15 2.24 48.06 24.25 2.21 23.52 24.25 2.21 24.35 2.10 0.90 (-0.17,8.70E-1) 

bl-wr2-wht2.10–50.sdeg 125 38.85 4.70 534.62 42.25 4.67 190.06 42.65 4.48 108.78 42.65 4.48 43.05 19.79 0.70 (-0.32,7.49E-1) 

bl-wr2-wht2.10–50.sdeg 200 51.20 7.08 1306.13 55.70 6.54 798.97 56.80 7.10 230.03 56.75 7.03 57.10 161.87 0.75 (-0.57,5.73E-1) 

graph3 16 15.70 0.56 0.96 15.70 0.56 0.46 0.50 0.87 2.94 15.70 0.56 15.80 0.06 0.90 (0.00,1.00E + 0) 

graph3 41 32.00 2.30 25.23 31.80 1.99 27.95 3.05 5.84 27.43 33.65 2.55 36.75 7.32 0.05 (-2.85,6.32E-3) 

graph3 65 37.60 2.58 49.27 40.30 2.57 57.90 19.85 19.82 59.62 43.35 2.67 46.30 33.69 0.00 (-3.06,3.53E-3) 

graph4 43 42.05 1.02 95.74 41.45 1.28 168.87 8.75 15.53 91.49 42.30 1.00 42.65 1.88 0.70 (-2.51,1.52E-2) 

graph4 108 64.10 3.06 697.46 68.15 2.73 730.44 1.65 1.19 736.24 76.10 3.35 80.75 308.23 0.00 (-9.72,3.25E-13) 

graph4 173 73.95 3.54 974.35 85.10 3.53 1111.98 1.85 1.53 1118.79 94.85 3.61 105.80 940.40 0.00 (-8.24,5.75E-11) 

mesh15x15 22 21.40 0.66 13.39 21.15 1.42 10.62 4.35 7.45 14.87 21.95 0.22 22.00 1.06 0.95 (-2.28,2.96E-2) 

mesh15x15 56 31.45 1.77 54.52 32.80 4.00 56.77 17.30 17.28 59.61 37.45 2.09 40.25 26.58 0.00 (-4.22,1.29E-4) 

mesh15x15 90 36.30 2.54 60.05 43.15 4.84 112.52 24.85 21.45 114.68 46.90 2.51 53.20 84.22 0.00 (-1.19,2.38E-1) 

mesh25x25 62 45.50 2.91 398.37 43.96 2.75 679.55 1.05 0.92 402.32 50.60 2.63 57.55 125.20 0.00 (-8.09,9.13E-11) 

mesh25x25 156 59.95 2.82 1639.32 69.25 3.78 1845.70 2.50 1.28 1854.58 80.95 4.22 91.65 917.19 0.00 (-10.57,1.61E-14) 

mesh25x25 250 67.45 3.14 2807.36 87.55 3.77 3165.17 3.40 1.28 3178.79 101.00 3.77 116.20 2534.67 0.00 (-11.21,1.77E-15) 

Average Gap (%) 13.86 8.63 40.64 4.47 

N

t

p

f  

s

s

p

f

s  

b

b

r

t

c

g

t

4

(  

d

i  

c

t

w

s

p

c

p

i

h

t

4

o

s

f  

d

o

i

L

a

i

a

s

L

t

p

s

w

T

4

g

2  

2

n

ote that since LaPSO produces the tightest relaxed bounds, all of 

he gaps are computed using LaPSO’s Upper Bounds. This figure 

lots the optimality gaps of each method in decreasing order. The 

ull set of results is shown in Table 5 . With regards to the poor re-

ults produced by CPLEX, particularly for the larger graphs tested 

uch as mesh25x25, this can be attributed to the difficulty of the 

roblem and limited CPU time given. For these problems, the MIP 

ormulation can contain a significant number of variables and con- 

traints, O (| K|| E| ) and O (| K|| N| ) respectively, where K is the num-

er of commodities, E is the number of edges and N is the num- 

er of vertices. For these large instances, with only limited CPU 

untime available, in some cases simply solving the LP relaxation 

akes a significant proportion of the available CPU time. In other 

ases, producing a good quality integer solution is also difficult, 

iven that the heuristics used are generic MIP repair type heuris- 

ics with no knowledge of the problem structure. 

.7. Set 1 - Non comparable methods 

Comparing LaPSO with GA ( Hsu & Cho, 2015 ) and ILP + EA 

 Martín et al., 2020 ) is not able to be carried out fairly due to the

ifferences in experimental set ups. The GA algorithm as reported 

n ( Hsu & Cho, 2015 ) is run 30 times on one instance from each

ommodity-graph pair. This experiment design only tests 27 out of 

he 540 instances which are available. We were unable to discover 

hich instances were tested, and therefore an accurate compari- 

on is not available. For ILP + EA, there exist two commodity-graph 

airings for which the solutions reported exceed the Upper Bounds 

alculated by both LaPSO and CPLEX. Without the exact solutions 

rovided by the authors, we are unable to verify the exact test- 

ng methodology and criteria presented in ( Martín et al., 2020 ). We 
12 
ave included a comparison with these two methods in Table 1 in 

he Appendix. 

.8. Set 2 - Comparable methods 

LaPSO is able to achieve state-of-the-art averages on 10 out 

f the 54 instances tested, and equalling or bettering the current 

tate-of-the-art average on 50 out of the 54 instances tested. Un- 

ortunately the authors in ( Pham et al., 2012 ) do not give stan-

ard deviations and therefore statistical tests could not be carried 

ut. We have included the standard deviations produced by LaPSO 

n Table 6 for future researchers. The average GAP percentage for 

aPSO is 4.00% whilst ACO, LS-SGA, LS-R and CPLEX have aver- 

ge gaps of 12.31%, 9.42%, 7.35% and 23.14% respectively. Again, 

n a similar manner as described in Section 4.6 , for the larger 

nd more difficult instances, CPLEX struggles to find either a LP 

olution or a good primal solution within the limited CPU time. 

aPSO is able to prove optimality for 64.81% of the 1080 instances 

ested. A gap ranking comparison is shown in Fig. 9 . This figure 

lots the optimality gaps of each method in decreasing order. It 

hows that LaPSO has the fewest instances (just 19 out of 54) that 

ere not solved to optimality. The full set of results is shown in 

able 6 . 

.9. Set 2 - Non comparable methods 

We are unable to provide a comparable analysis to the results 

iven for the MP and MP-rein methods presented in ( Altarelli et al., 

015 ), as well as the ILP + EA method presented in ( Martín et al.,

020 ). The results given for both MP and MP-rein methods do 

ot contain run-times for the instances tested, a significant factor 
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Table 6 

Comparison results of the three methods ACO, LS - SGA, LS - R, CPLEX and LaPSO for Dataset 2. The first column graph describes the graph structure used. The CPU time 

limit for all runs was 30 minutes as described in Pham et al. (2012) . q̄ represents the average objective value over the 20 runs completed for each of the 54 graph and 

commodity pairings. std represent the standard deviation of the objective values, whilst t̄ represents the average CPU runtime taken to find the best solution within each 

instance. The best q̄ are bolded to show the best average objective value between the ACO, L S - SGA, L S - R, CPLEX and LaPSO methods. The provably optimal column 

shows what proportion of instances were provably optimal when using the Upper Bounds found during the LaPSO algorithm. 

Graph ACO LS - SGA LS - R CPLEX LaPSO 

q̄ t̄ q̄ t̄ q̄ t̄ q̄ std t̄ q̄ std UB t̄ Optimal 

bl-wr2-wht2.10–50.rand.rpairs.10.1 14.80 131.60 15.60 410.76 16.00 194.71 16.00 0.00 12.63 16.00 0.00 16.00 1.12 1.00 

bl-wr2-wht2.10–50.rand.rpairs.10.2 25.25 95.41 25.90 434.43 26.00 151.09 26.00 0.00 20.18 26.00 0.00 26.00 1.67 1.00 

bl-wr2-wht2.10–50.rand.rpairs.25.1 31.85 165.22 31.40 564.99 32.00 263.71 32.00 0.00 82.60 32.00 0.00 32.00 5.54 1.00 

bl-wr2-wht2.10–50.rand.rpairs.25.2 34.75 97.33 34.40 544.02 34.95 303.26 35.00 0.00 82.44 35.00 0.00 35.00 5.58 1.00 

bl-wr2-wht2.10–50.rand.rpairs.40.1 37.85 219.56 37.60 322.96 37.90 230.29 38.00 0.00 171.10 38.00 0.00 38.00 14.41 1.00 

bl-wr2-wht2.10–50.rand.rpairs.40.2 36.95 185.14 36.05 422.18 36.95 293.27 37.00 0.00 131.55 37.00 0.00 37.00 14.60 1.00 

bl-wr2-wht2.10–50.sdeg.rpairs.10.1 15.95 89.24 16.25 529.03 17.00 430.99 17.00 0.00 20.07 17.00 0.00 17.00 1.64 1.00 

bl-wr2-wht2.10–50.sdeg.rpairs.10.2 19.20 401.19 19.65 522.22 20.00 448.59 20.00 0.00 20.90 20.00 0.00 20.00 1.55 1.00 

bl-wr2-wht2.10–50.sdeg.rpairs.25.1 35.80 67.08 35.45 536.40 36.00 423.68 36.00 0.00 91.43 36.00 0.00 36.00 4.91 1.00 

bl-wr2-wht2.10–50.sdeg.rpairs.25.2 32.95 365.09 32.90 880.04 33.90 516.21 34.00 0.00 89.28 34.00 0.00 34.00 4.90 1.00 

bl-wr2-wht2.10–50.sdeg.rpairs.40.1 33.65 169.90 33.10 472.56 34.00 557.57 34.00 0.00 145.06 34.00 0.00 34.00 14.01 1.00 

bl-wr2-wht2.10–50.sdeg.rpairs.40.2 36.50 133.00 35.70 936.57 37.00 583.99 37.00 0.00 146.29 37.00 0.00 37.00 13.72 1.00 

mesh15x15.rpairs.10.1 19.65 457.46 21.75 644.11 21.55 360.53 22.00 0.00 62.25 22.00 0.00 22.00 4.02 1.00 

mesh15x15.rpairs.10.2 17.50 479.89 19.40 515.65 19.45 568.74 20.00 0.00 135.34 20.00 0.00 22.00 2.32 0.00 

mesh15x15.rpairs.25.1 27.70 470.98 29.80 335.51 32.00 887.93 35.00 0.00 1804.52 35.00 0.00 37.00 609.65 0.00 

mesh15x15.rpairs.25.2 29.20 1010.52 31.70 480.98 33.05 592.96 35.00 0.00 378.07 35.00 0.00 37.15 52.84 0.00 

mesh15x15.rpairs.40.1 35.30 871.22 35.80 763.25 38.80 960.97 42.00 0.00 1805.63 41.00 0.00 46.00 74.47 0.00 

mesh15x15.rpairs.40.2 34.00 750.55 34.60 649.26 37.60 910.63 42.00 0.00 1806.33 41.00 0.00 45.00 1011.78 0.00 

mesh25x25.rpairs.10.1 32.85 996.96 39.15 864.60 41.00 946.47 0.00 0.00 1804.58 48.00 0.00 55.00 61.13 0.00 

mesh25x25.rpairs.10.2 30.10 944.36 35.70 875.12 37.90 945.08 0.90 0.30 1804.92 47.00 0.00 53.00 142.62 0.00 

mesh25x25.rpairs.25.1 45.00 1104.82 51.95 1053.57 55.55 1111.80 0.00 0.00 1805.93 66.00 0.00 75.00 1468.14 0.00 

mesh25x25.rpairs.25.2 45.60 1015.84 51.35 673.59 54.70 1042.11 0.00 0.00 1806.48 66.00 0.00 73.35 1517.50 0.00 

mesh25x25.rpairs.40.1 57.70 797.14 65.30 950.87 69.30 1520.61 0.00 0.00 1811.66 83.00 0.00 105.00 1806.39 0.00 

mesh25x25.rpairs.40.2 57.75 939.82 65.05 1409.13 68.85 1040.24 0.00 0.00 1812.61 82.30 0.46 106.55 1777.54 0.00 

planar-n100.ins1.rpairs.10.1 10.00 0.12 10.00 1.14 10.00 1.07 10.00 0.00 2.16 10.00 0.00 10.00 0.03 1.00 

planar-n100.ins1.rpairs.25.1 25.00 20.22 25.00 7.05 25.00 5.33 25.00 0.00 19.98 25.00 0.00 25.00 0.08 1.00 

planar-n100.ins1.rpairs.40.1 34.00 680.72 35.30 813.56 36.00 698.88 37.00 0.00 166.30 37.00 0.00 40.00 5.40 0.00 

planar-n200.ins1.rpairs.10.1 20.00 13.46 20.00 4.06 20.00 5.23 20.00 0.00 4.98 20.00 0.00 20.00 0.05 1.00 

planar-n200.ins1.rpairs.25.1 41.80 889.07 44.85 988.81 45.95 853.18 50.00 0.00 908.02 50.00 0.00 50.00 14.47 1.00 

planar-n200.ins1.rpairs.40.1 49.35 790.65 53.35 1033.97 55.70 901.74 62.00 0.00 1803.41 62.00 0.00 65.00 851.21 0.00 

planar-n50.ins1.rpairs.10.1 5.00 0.03 5.00 0.86 5.00 0.80 5.00 0.00 2.08 5.00 0.00 5.00 0.01 1.00 

planar-n50.ins1.rpairs.25.1 12.00 0.16 12.00 0.96 12.00 0.97 12.00 0.00 2.38 12.00 0.00 12.00 0.01 1.00 

planar-n50.ins1.rpairs.40.1 20.00 36.38 20.00 25.12 19.90 31.18 20.00 0.00 7.75 20.00 0.00 20.00 0.02 1.00 

planar-n500.ins1.rpairs.10.1 44.95 1100.41 49.95 484.84 50.00 309.24 46.07 12.30 1778.53 50.00 0.00 50.00 0.96 1.00 

planar-n500.ins1.rpairs.25.1 60.95 954.35 73.85 1345.74 78.20 1044.03 0.00 0.00 1805.59 94.00 0.00 103.00 653.41 0.00 

planar-n500.ins1.rpairs.40.1 82.85 1235.13 93.95 1366.27 100.15 1455.43 3.00 0.00 1807.94 121.00 0.00 137.00 1662.02 0.00 

steinb10.rpairs.10.1 7.00 0.02 7.00 1.35 7.00 1.16 7.00 0.00 1.83 7.00 0.00 7.00 0.00 1.00 

steinb10.rpairs.25.1 17.85 96.48 18.00 13.42 18.00 5.20 18.00 0.00 4.24 18.00 0.00 18.00 0.03 1.00 

steinb10.rpairs.40.1 24.35 242.04 26.25 682.84 27.30 505.22 28.00 0.00 1803.26 27.00 0.00 30.00 2.36 0.00 

steinb16.rpairs.10.1 10.00 0.25 10.00 1.46 10.00 1.52 10.00 0.00 2.03 10.00 0.00 10.00 0.02 1.00 

steinb16.rpairs.25.1 24.35 364.99 25.00 93.53 25.00 8.86 25.00 0.00 8.78 25.00 0.00 25.00 0.16 1.00 

steinb16.rpairs.40.1 32.45 658.25 34.10 747.34 35.95 646.19 36.00 0.00 1803.21 35.00 0.00 40.00 3.55 0.00 

steinb4.rpairs.10.1 5.00 0.01 5.00 1.12 5.00 1.09 5.00 0.00 1.65 5.00 0.00 5.00 0.00 1.00 

steinb4.rpairs.25.1 12.00 0.44 12.00 1.22 12.00 1.40 12.00 0.00 1.82 12.00 0.00 12.00 0.01 1.00 

steinb4.rpairs.40.1 20.00 51.11 20.00 5.45 19.90 2.80 20.00 0.00 3.64 20.00 0.00 20.00 0.01 1.00 

steinc11.rpairs.10.1 50.00 23.59 50.00 42.19 50.00 37.64 50.00 0.00 21.92 50.00 0.00 50.00 0.58 1.00 

steinc11.rpairs.25.1 123.30 521.80 125.00 128.49 125.00 262.38 2.70 0.90 1805.40 125.00 0.00 125.00 4.55 1.00 

steinc11.rpairs.40.1 194.25 494.64 200.00 395.54 200.00 473.81 2.70 0.90 1810.58 200.00 0.00 200.00 16.07 1.00 

steinc16.rpairs.10.1 50.00 6.89 50.00 55.12 50.00 46.01 50.00 0.00 76.54 50.00 0.00 50.00 1.26 1.00 

steinc16.rpairs.25.1 125.00 17.13 125.00 194.36 125.00 113.83 125.00 0.00 385.62 125.00 0.00 125.00 10.50 1.00 

steinc16.rpairs.40.1 200.00 45.32 200.00 366.69 200.00 183.32 200.00 0.00 1820.29 200.00 0.00 200.00 32.18 1.00 

steinc6.rpairs.10.1 49.10 572.75 50.00 184.44 50.00 240.75 50.00 0.00 33.12 50.00 0.00 50.00 0.43 1.00 

steinc6.rpairs.25.1 89.90 728.76 92.20 734.88 104.95 1370.88 1.00 0.00 1805.94 115.00 0.00 125.00 442.79 0.00 

steinc6.rpairs.40.1 109.80 924.10 112.05 971.40 121.40 1372.37 3.00 0.00 1806.88 136.00 0.00 177.00 1462.60 0.00 

Average Gap (%) 12.31 9.42 7.35 24.97 4.00 
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ffecting the quality of solutions. We therefore do not consider 

hese results to be a fair comparison for state-of-the-art purposes. 

egarding the ILP + EA method, there exist similar problems to 

hose described for Set 1. In ( Martín et al., 2020 ) the results given

how 21 out of the 54 instances tested achieving primal solution 

alues greater than the Upper Bounds of both LaPSO and CPLEX. 

ithout having access to the authors solutions in ( Martín et al., 

020 ), we are unable to comment on these differences. We have 

ncluded both MP, MP-rein and ILP + EA methods in Table 2 in the 

ppendix for completeness. 
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.10. Set 3 - Newly created larger graphs 

For the newly created instances in Dataset 3, we can see more 

learly the effectiveness of LaPSO when compared to CPLEX as 

roblem sizes are increased, as shown in Table 7 . During testing, 

e discovered that synthetically creating new problem instances 

hich are difficult to solve is quite a challenging task in and of 

tself. Despite the significant increase in graph sizes, as seen in 

he “easy” labelled instances, LaPSO is able to find almost optimal 

olutions for most of the instances tested, despite only being able 
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Fig. 9. Optimality Gap Comparisons. Optimality gaps calculated using the average heuristic Lower Bounds and LaPSO’s Upper Bounds from 20 runs for each of the 54 graph- 

commodity pairs in Dataset 2. Optimality gaps are plotted in descending order for each method. The Instances axis does not refer to a specific instance, instead it is the 

index in the ordered sequence. 

Table 7 

Comparison results of the two methods CPLEX and LaPSO for Dataset 3. The first column graph describes the 

graph structure used, with the ODs column describing the number of commodities to be transported. q̄ represents 

the average objective value over the 20 different problem instances for each graph and commodity pairing. std 

represents the standard deviation of the objective values and t̄ represents the average CPU runtime for each 

instance solved using LaPSO. Whilst a runtime limit of 3600 CPU seconds was given for both CPLEX and LaPSO, 

in some instances LaPSO exceeds this runtime as it completes its current iteration. We therefore include t̄ as it is 

a more fair CPU time for future researchers to benchmark against. The best q̄ are bolded to show the best average 

objective value between the CPLEX and LaPSO methods. The Optimal column shows what proportion of instances 

were provably optimal when using the best Upper Bounds found by CPLEX or the LaPSO algorithm. 

Graph ODs CPLEX LaPSO 

q̄ std UB q̄ std UB t̄ Optimal 

easy_2_1 400 0.00 0.00 398.00 398.00 0.00 399.00 3627.97 1.00 

easy_2_2 400 0.00 0.00 400.00 400.00 0.00 400.00 295.39 1.00 

easy_3_1 600 0.00 0.00 598.00 598.00 0.00 600.00 3829.58 1.00 

easy_3_2 600 0.00 0.00 600.00 600.00 0.00 600.00 1034.52 1.00 

easy_4_1 800 0.00 0.00 797.00 795.00 0.00 800.00 3808.77 0.00 

easy_4_2 800 0.00 0.00 799.00 797.15 0.36 800.00 3837.09 0.00 

easy_5_1 1000 0.00 0.00 999.00 996.00 0.00 1000.00 4175.43 0.00 

easy_5_2 1000 0.00 0.00 999.00 996.00 0.00 1000.00 4185.91 0.00 

Average Gap (%) 100 0.13 

hard-small 475 0.00 0.00 389.00 292.00 0.00 293.00 3609.75 0.00 

hard-med 725 0.00 0.00 718.00 501.30 0.46 667.00 3661.13 0.00 

hard-large 975 0.00 0.00 954.00 711.00 0.00 975.00 3896.16 0.00 

Average Gap (%) 100 16.89 
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o run a very limited number of iterations. This suggests to us that 

hese instances are too easy for a heuristic based path finding tech- 

ique, perhaps indicating that the number of paths available for 

ommodities to be routed are too numerous. For a Mixed Integer 

rogramming (MIP) solver however, the increase in problem size 

imply becomes too difficult to provide any meaningful bounds or 

euristic solutions. Within the given runtime (1 h and), the only 

easible solutions produced by CPLEX are the incumbent solutions 

ith values of 0. This can be attributed to the scale of these prob-

em sizes, as even solving the root node relaxation to optimality is 

ften not even possible within the available runtime. Considering 

he number of variables is O (| K|| E| ) , where K is the number

f commodities and E is the number of edges, for the largest 

easy” instances, the number of variables is close to ten million. In 
14 
ddition to the large number of variables, the MEDP problem also 

ontains a significant number of constraints, O (| K|| V | ) , where 

 is the number of vertices, and therefore solving even the re- 

axed problem is difficult, using either a primal or dual simplex 

pproach. 

For the “hard” graphs, we can start to see what problem sizes 

esult in a degradation of the quality of solutions produced by 

aPSO. Whilst the optimality gap for the hard-small instance is 

.34%, for the hard-med and hard-large instances, the optimality 

aps are 24.84% and 27.08% respectively. Looking at Fig. 10 it is 

lear that there simply isn’t enough CPU time available to solve 

ifficult instances of this size, with only a limited number of it- 

rations of the LaPSO algorithm being able to be completed. De- 

pite the problem sizes of Dataset 3 being larger than the problem 
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Fig. 10. Bound comparisons for the hard instances in the newly created Dataset. The bound values given are averages of the best upper and lower bounds for the 20 different 

runs of LaPSO carried out. 
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izes in Dataset 2 in only a linear fashion, coupled with the dou- 

ling of the CPU runtime limit (from 1800s to 3600s), because the 

hortest path algorithm used to solve the subproblems in LaPSO 

s non linear itself ( O (| E log V | ) , this has resulted in significantly

ewer iterations being able to be performed within the given run- 

ime. For both “easy” and “hard” instances, we can still see the 

ffectiveness of the LaPSO method being a “quasi-exact” method, 

n the sense that it is able to produce both good primal solutions 

nd bounds for the MEDP problem, thereby providing an optimal- 

ty gap which heuristic based methods are unable to. For “easy”

roblems, LaPSO has shown to be effective for problem sizes up to 

500 nodes and 10,000 edges. For more difficult problems, LaPSO’s 

ffectiveness has been demonstrated for problem sizes containing 

etween 50 0–10 0 0 nodes and 150 0–30 0 0 edges, within a one hour

untime limit. 

. Conclusions 

This paper presented an adaptation of the LaPSO algorithm in 

he context of the Maximum Edge Disjoint Path (MEDP) problem. 

aPSO is a hybrid metaheuristic combining Lagrangian Relaxation 

ith Particle Swarm Optimisation in a way that is generically ap- 

licable but has not yet been widely tested. A novel repair heuris- 

ic was presented, which we have labelled LVP (Largest Violation 

erturbation). We have shown that this new repair method sig- 

ificantly outperforms other alternatives when embedded in the 

aPSO framework. We have also provided analysis regarding the 

ffect that the perturbations have on the LaPSO algorithm. Our 

omputational results show that the LaPSO algorithm outperforms 

urrent state-of-the-art methods, producing better primal solutions 

or 32.1% of the instances tested, and similar solution qualities for 

he remainder. Unlike other heuristic based techniques, the LaPSO 

lgorithm is also able to produce relaxed bounds that can provide 

ptimality guarantees. This allows the LaPSO algorithm to act as 

 “quasi-exact” method, producing provably optimal solutions for 

ost of the problem instances tested. This benefit is highlighted 

hen testing the larger, non-trivial instances, where a more tradi- 

ional “exact” method such as a Mixed Integer Programming (MIP) 

olver is unable to produce any meaningful bounds when given 

imited CPU time. We have also created a new Dataset for bench- 

arking purposes, containing instances significantly larger than 

revious benchmarks. For these newly created instances, the ef- 

ectiveness of LaPSO being able to provide both high quality pri- 

al and dual solutions is even more pronounced, when compared 

o the results generated by a MIP solver. It is interesting that 

ur heuristic method not only outperforms other meta-heuristic 

lgorithms but also outperforms linear programming based exact 

olvers (CPLEX and the Volume Algorithm) in finding good relaxed 

ounds. Hence, while the current work has focused mainly on the 

bility to produce high quality heuristic solutions, future work may 

ook at producing tighter bounds so that more problems can be 
15 
olved to provable optimality. The strong performance of our LaPSO 

ethod for this problem also suggests that the same framework 

ay yield high performing results for other combinatorial opti- 

isation problems which are amenable to a Lagrangian relaxation 

ased approach. 
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