
Information Sciences 317 (2015) 224–245
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Algorithm selection for black-box continuous optimization
problems: A survey on methods and challenges
http://dx.doi.org/10.1016/j.ins.2015.05.010
0020-0255/� 2015 Elsevier Inc. All rights reserved.

⇑ Corresponding author at: School of Mathematical Sciences, Monash University, Clayton, Victoria 3800, Australia.
E-mail address: mario.munoz@monash.edu (M.A. Muñoz).
Mario A. Muñoz a,b,⇑, Yuan Sun b, Michael Kirley c, Saman K. Halgamuge b

a School of Mathematical Sciences, Monash University, Clayton, Victoria 3800, Australia
b Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
c Department of Computer and Information Systems, The University of Melbourne, Parkville, Victoria 3010, Australia
a r t i c l e i n f o

Article history:
Received 18 November 2014
Received in revised form 17 March 2015
Accepted 1 May 2015
Available online 7 May 2015

Keywords:
Algorithm selection
Black-box continuous optimization
Empirical performance models
Exploratory landscape analysis
Performance prediction
Problem hardness measures
a b s t r a c t

Selecting the most appropriate algorithm to use when attempting to solve a black-box con-
tinuous optimization problem is a challenging task. Such problems typically lack algebraic
expressions, it is not possible to calculate derivative information, and the problem may
exhibit uncertainty or noise. In many cases, the input and output variables are analyzed
without considering the internal details of the problem. Algorithm selection requires
expert knowledge of search algorithm efficacy and skills in algorithm engineering and
statistics. Even with the necessary knowledge and skills, success is not guaranteed.

In this paper, we present a survey of methods for algorithm selection in the black-box
continuous optimization domain. We start the review by presenting Rice’s (1976) selection
framework. We describe each of the four component spaces – problem, algorithm, perfor-
mance and characteristic – in terms of requirements for black-box continuous optimization
problems. This is followed by an examination of exploratory landscape analysis methods
that can be used to effectively extract the problem characteristics. Subsequently, we pro-
pose a classification of the landscape analysis methods based on their order, neighborhood
structure and computational complexity. We then discuss applications of the algorithm
selection framework and the relationship between it and algorithm portfolios, hybrid
meta-heuristics, and hyper-heuristics. The paper concludes with the identification of key
challenges and proposes future research directions.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

The objective of an optimization problem is to improve a measure of performance or cost – the output variable – by
adjusting the values of the input variables. Typically, the optimization problem is represented as a function that maps the
inputs to the output, subject to constraints. When both the input and output variables are real numbers, the problem is
referred to as a continuous optimization problem. Such problems are common in science, engineering, finance, and other
fields [81].

Many continuous optimization problems lack algebraic expressions and may not even have a precise goal. Topologically,
the problem may present local and global optima or discontinuities where it is not possible to calculate derivative informa-
tion. The problems frequently incorporate dependencies between input variables, and large output fluctuations between

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2015.05.010&domain=pdf
http://dx.doi.org/10.1016/j.ins.2015.05.010
mailto:mario.munoz@monash.edu
http://dx.doi.org/10.1016/j.ins.2015.05.010
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245 225
adjacent input values – characteristics that are often unknown a priori. Furthermore, the problem may involve simulations or
experiments, which may be computational expensive or resource intensive. The input and output variables are often ana-
lyzed without considering the internal details of the problem. In other words, the problem is modeled as a black-box.

A search algorithm is typically used to solve a black-box continuous optimization problem (BCOP). Given the fact that the
number of algorithms introduced into the optimization community has increased over the past decades, it is extremely dif-
ficult for practitioners to be familiar with the specifics of all the algorithms [59]. Compounding the issue, is the diverse array
of models used by algorithms to generate candidate solutions. In this context, the model is a set of assumptions describing
the relationship between input and output variables. Nevertheless, the problem characteristics may break these assump-
tions, degrading the algorithm performance [50,159]. Unfortunately, we have a limited theoretical understanding of the
strengths and weaknesses of most algorithms [93,96,119,111,145]. Consequently, selecting the most efficient algorithm
for a given BCOP is non-trivial and is at best cumbersome [147]. Algorithm selection requires expert knowledge of search
algorithms, and skills in algorithm engineering and statistics [15]. Even then, failure is still an option.

A number of approaches, such as algorithm portfolios, hybrid meta-heuristics, hyper-heuristics, parameter tuning and
control methods, have been proposed to circumvent the algorithm selection challenge [4,8,13,18,35,41,63,64,115].
However, these approaches disregard the similarities between the current problem and previously observed problems
[23]. An alternative is to construct a map between the problem and algorithm spaces [125]. Due to the complexity of these
two spaces, the map can be constructed between measures of the problem characteristics and an algorithm performance
measure [125], using a machine learning model [137]. This approach has been successful in a number of problem domains
[2,9,39,44–46,61,62,65,69,70,73–77,87–89,136–139,141,148,157,166–169] including BCOPs [1,14,102], where Exploratory
Landscape Analysis (ELA) [91] methods are used to measure the problem characteristics.

In this paper, we present a survey of methods for algorithm selection for BCOPs. The paper is organized as follows: In
Section 2, we describe the algorithm selection framework proposed by Rice in [125], which lays down the conceptual foun-
dations for the problem–algorithm map. Each of the four component spaces – problem, algorithm, performance and charac-
teristic – are described in terms of requirements for black-box continuous optimization problems in subsequent sections. In
Section 3, we formally define a BCOP and problem characteristics, employing the fitness landscape concept. In Section 4, we
briefly discuss different classes of search algorithms. As such, this section illustrates the diversity of algorithms available to
practitioners. In Section 5, we introduce the methods used to measure algorithm performance. In Section 6, we present a
classification and a summary of well known ELA methods for the analysis of continuous fitness landscapes. We then present
implementations of the algorithm selection framework for BCOPs, and describe related approaches in Section 7. Finally, in
Section 8 we propose future research directions.
2. The algorithm selection framework

The algorithm selection problem (ASP) is defined as follows1: Let F be a problem space or domain, such as continuous opti-
mization. Let A be the algorithm space, which is a set of algorithms that can be applied to the problems in F . For a given prob-
lem f 2 F , the objective is to find an algorithm ao 2 A that minimizes q f ;að Þ, which is a measure of the cost of using an
algorithm a 2 A to solve f. Perhaps Rice was the first to describe the ASP in his 1976 paper [125]. He introduced the framework
illustrated in Fig. 1 to solve the ASP [137].

The framework has four components. The first one, F , cannot be properly defined without using complex mathematical
notation [126]. Although F has infinite cardinality, it excludes unsolvable problems such as a random function. Furthermore,
F is high dimensional due to the large number of problem characteristics [125]. The second component of the framework is
A, which potentially has an infinite cardinality. However, it is impractical to consider all reported algorithms [125]. Instead,
A contains the smallest set of algorithms, such that each one of them solves a large subset of problems in F with the best
possible performance [6]. These algorithms should be complementary – they solve different types of problems – and robust –
their accuracy and precision is scientifically demonstrable. The third component of the framework is the performance space,
P � R. It is the set of feasible values of q f ;að Þ. The performance measure represents the accuracy, speed, or other algorithmic
requirements.

The ASP is ill-defined due to the complexity and size of F and A. Therefore, formal solutions to the ASP may not exist. To
simplify the problem, Rice introduced the features or characteristics space, C � Rm, as the fourth component of his
framework. Characteristics are domain dependent, and provide order to F by imposing a low dimensional space
[126,154]. Furthermore, characteristics must be measurable, expose the complexities of f, and provide knowledge about
the strengths and weaknesses of a [137]. Hence, selecting the characteristics is a key step in the application of the framework
[125].

The framework is conceptually rich, although it lacks a clear implementation path for the selection mapping S : C ! A.
Consequently, the framework lacked extensive application until machine learning models – in this context known as
meta-models – became a suitable implementation approach [137]. We will further discuss the meta-models and their
implementation in Section 7.
1 We have modified Rice’s notation to use f as function. In the original paper, x is a problem, f xð Þ is a feature, A is an algorithm, p A; xð Þ is a performance
measure, P is the problem space, and F is the feature/characteristics space.



Fig. 1. Diagram of the algorithm selection framework proposed by Rice in his 1976 paper [125,137]. The framework has four components: the problem,
algorithm, performance and characteristic spaces.

226 M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245
3. Problem space: continuous optimization and fitness landscapes

The first component of the algorithm selection framework is the problem space, F , defined in Section 2 as the set of all the
possible problems in the domain. The goal in a continuous optimization problem is to minimize or maximize the function
f : X # Y where X � RD is a bounded and compact space known as the input space, Y � R is known as the output space,
and D 2 Nþ is the dimensionality of the function. From now on we shall use problem and function interchangeably and
assume minimization without loss of generality.

Let x 2 X be a candidate solution with a cost or fitness of y 2 Y such that y ¼ f xð Þ. We call the subset of candidates the
input sample, X, and their cost values the output sample, Y. A BCOP is a problem such that it cannot be described with simple
mathematical expressions, lacks of useful or computable first and second derivatives, or has information that is not explicit
in the problem description, such as randomness or uncertainty. For these problems, the inputs and the outputs of the func-
tion are analyzed without considering the function’s internal workings. Therefore, a solution can only be found by sampling
the input space.

An optimal solution, xo 2 X ; yo ¼ f xoð Þ, is defined as the candidate for which all the elements in X have higher cost, i.e.,
xo : 8x 2 X ; y P yof g. In practice, it is neither fundamental nor feasible to find xo. Hence, we define a target solution,

xt ; yt ¼ f xtð Þ, as the candidate for which the difference in cost with xo is less or equal than an acceptable value, et , i.e.,
xt : xt 2 X ; yt � yo 6 etf g. Alternatively, xt can be defined as the candidate that offers the maximum improvement over a pre-

viously known cost if yo is unknown.
The only restriction on the sampling procedure used to find xt is that it generates candidates inside of X. Although a ran-

dom or a grid search are valid sampling procedures, neither of them are likely to find xt in finite time. A better way to look for
xt is to use a search algorithm, which is a systematic procedure that takes previous candidates and their costs as inputs, and
generates new and hopefully better candidates as outputs. For this purpose, the search algorithm maintains a simplified
model of the relationship between candidates and costs. The model assumes that the problem has an exploitable structure;
hence, the algorithm can infer details about the structure of the problem by collecting information during the run. This struc-
ture is known as the fitness landscape [122].

To understand the concept behind fitness landscapes, consider a function with D ¼ 2. The fitness landscape can be
thought of as a surface in a three dimensional space2 composed of ridges, valleys, plateaus and basins as illustrated on
Fig. 2. The local and global optima are located at the lowest points of this surface [153]. In this context, the goal of the search
algorithm is to find a target solution, storing information about the structure of the surface as it progresses to update its model.
The way in which the model infers the fitness landscape has a direct impact on its performance.
2 Two dimensions correspond to X and one more corresponds to Y.



(a) Surface view (b) Contour view

Fig. 2. Fitness landscape of a function with D ¼ 2. (a) Illustrates the landscape as a three dimensional surface composed of ridges, valleys, plateaus and
basins. The local and global optima are located at the lowest points of this surface. (b) Shows a contour view of the landscape and the location of a candidate
solution, x 2 X and an input sample, X � X . The color bars indicate the value of the cost. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245 227
Formally, a fitness landscape L for a function f is the tuple L ¼ X ; f ; dð Þ, where d is a distance metric that quantifies the
similarity between candidates. In continuous optimization, d is often the Euclidean distance. Similar candidates are those
whose distance between them is less than a threshold [118]. These candidates form a neighborhood, N r xð Þ � X , defined
as follows:
xi 2 N r xð Þ () d x;xið Þ 6 r ð1Þ
where r is the radius of a hypersphere centered on xi. Empirical studies suggest that the volume of N r and the search algo-
rithm performance are correlated [36]. Furthermore, as D increases so does the size of X and the volume of N r , resulting in
loss of algorithm performance [80], an effect known as the curse of dimensionality [60].

Using the definitions of fitness landscape and neighborhood presented above, we provide formal definitions for local and
global optima. A local optimum in a landscape L is a candidate xl 2 X such that y > yl for all x 2 N r xlð Þ. The set of local
optima can be denoted as X l � X . A global optimum in a landscape L is a candidate xo 2 X l such that yl 6 yo for all
xl 2 X l. The set of global optima can be denoted as Xo #X l. These definitions will come in handy when we describe the dif-
ferent characteristics of a function.
3.1. Modality and smoothness

Some characteristics of the fitness landscape can be described using the cardinality of both X l and Xo. An unimodal land-
scape (Fig. 3a) is defined as the landscape with Xoj j ¼ X lj j ¼ 1. A multimodal landscape (Fig. 3b) is defined as the landscape
with X lj j > 1. Although a multimodal landscape is thought to be more difficult to search than an unimodal landscape, this
intuition is sometimes unfounded [92,162].

A closely related concept to multimodality is smoothness, which refers to the magnitude of change in fitness within a
neighborhood. A landscape can be informally classified as rugged, smooth or neutral. Rugged landscapes (Fig. 3c) have large
fluctuations between neighbors, presenting several local optima and steep ascents and descents. Neutral landscapes (Fig. 3d)
have large flat areas or plateaus, where changes in the input fail to generate significant changes in the output. Due to the
characteristics of both rugged and neutral landscapes, both gradient and correlation data provide scarce information.
Thus, it is difficult to assert whether a particular area of the landscape is worth exploring [162].

The pattern of the set of the local optima, X l, constitutes the global structure of the landscape, which can be used to guide
the search for xt . If this pattern is smooth (Fig. 3e), it provides potentially exploitable information for an algorithm. If this
pattern is rugged or inexistent, finding an optimum can be challenging, perhaps impossible [92]. It is also possible to find
problems that exhibit deceptiveness, i.e., the global structure and gradient information lead the algorithm away from the
optima (Fig. 3f), rendering the optimization algorithm less efficient than a random search or exhaustive enumeration
[162]. In addition, it is possible that the fitness landscape possesses opposite properties at different locations, e.g., highly
rugged in some regions, while neutral in others. These landscapes are said to be globally heterogeneous [92].



x

f (x)

xo

(a) Unimodal landscape
x

f (x)

xo

Localoptima

(b) Multimodal landscape

x

f (x)

xo

Ruggedarea

(c) Rugged landscape
x

f (x)

xo

Plateau

(d) Neutral landscape

x

f (x)

xo

GlobalStructure

(e) Landscape with strong global structure
x

f (x)

xo

GlobalStructure

(f) Deceptive Landscape

Fig. 3. Plots of six typical function in one dimension, where each plot depicts a specific landscape characteristic.

228 M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245
3.2. Basins of attraction

In dynamical systems, any system that evolves towards a steady state is said to be drawn to an attractor [171]. This idea
can be used in the context of continuous optimization, if we consider a local optimum to be a steady state. For this purpose,
define a local search as a function l : X ! X l, and the basin of attraction of a local optimum, xl, as the subset of X in which
the local search converges towards xl, i.e., B xlð Þ ¼ x : l xð Þ ¼ xlf g, where x is the initial candidate and l xð Þ is the local opti-
mum found.

The shape and distribution of the basins of attraction are key characteristics of the fitness landscape. Ideally, a problem
has isotropic or spherical basins (Fig. 4a). However, real-world problems may present anisotropic or non-spherical basins
(Fig. 4b). Usually, anisotropic basins are the result of non-uniform variable scaling. This means that the change in cost result-
ing from modifying one of the variables is marginal compared to the change resulting from modifying any of the other vari-
ables. A successful search in such landscapes requires small steps in one variable and large steps in others. Anisotropic basins
might be non-elliptical. Therefore, the problem cannot be broken down into easier problems of lower dimensionality [92].
Such non-separable problems may be significantly difficult for certain algorithms [50], and increase the computational cost
[80].

Both the shape and the size of basins of attraction are important. In a landscape with homogeneous basins, there is pos-
itive correlation between the value of a local optimum and the size of its basin, i.e., better local optima have bigger basins,
which is a desirable characteristic [92]. Furthermore, if the basins have the same size, the landscape has a deterministic con-
figuration (Fig. 4c); otherwise the landscape has a random configuration (Fig. 4d) [40].

3.3. Benchmark functions

The concepts of basins of attraction, neighborhood and fitness landscape are useful to describe the characteristics of a
given optimization problem. A qualitative description – using labels such as rugged or unimodal – of a function can be made
when its structure and characteristics are known. For example, Mersmann et al. describe in [92] the characteristics of 24
problems from the COmparison Continuous Optimizer (COCO) noiseless set [48].



Fig. 4. Contour plots of four typical function in two dimensions, where each plot depicts a specific landscape characteristic. Each dark dashed line
represents a fitness levelset. The red lines in (a) and (b) represent the gradient direction, rf . The red lines in (c) and (d) represent the size of the basin of
attraction, B x1ð Þ. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245 229
Benchmark functions, such as those in the COCO set, are employed to evaluate algorithm performance. Since their struc-
ture is known, empirical observations can be made regarding the characteristics that make a problem difficult for the algo-
rithm under evaluation. The noiseless set in COCO is composed of 24 scalable functions, divided into five groups: separable,
low or moderately conditioned, highly conditioned and unimodal, multimodal with adequate global structure, and multi-
modal with weak global structure. The noisy set is composed of eight basis functions, with different types and levels of noise
[48]. Due to its use at the annual BBOB workshops series at the Genetic and Evolutionary Computation Conference, it has
been widely used for comparing algorithms.3 Similar workshops are carried out every year at the Congress on Evolutionary
Computation. In 2005, the focus was on low dimensionality (D � 50) problems [146]. The benchmark set is composed of 25 test
functions divided in four groups: unimodal, basic multimodal, expanded multimodal, and hybrid composition. In 2013, the
focus was on high dimensionality (D P 1000) [79] or multimodality [78] problems. The high dimensional set is composed of
15 functions divided into four groups: fully separable, partially additively separable, overlapping, and fully non-separable.
The multimodal set was composed of 20 functions.

In addition to evaluating algorithm performance, these benchmark sets are useful to build meta-models – as mentioned
in Section 2. Furthermore, characteristics such as modality and smoothness are unknown for most real world problems.
Since the only information available for BCOPs are the input and output samples, ELA measures are the only approach to
acquire appropriate knowledge about the problem characteristics. Therefore, these benchmark sets are also useful to eval-
uate new ELA methods. We will discuss the ELA measures in detail in Section 6.
4. Algorithm space: Search algorithms for continuous optimization

The second component of the algorithm selection framework is the algorithm space, A. It was defined in Section 2 as the
smallest set of complementary and robust algorithms that solves all the problems in F with better than average perfor-
mance. Complementary algorithms solve different types of problems. Robust algorithms have scientifically demonstrable
accuracy and precision. All algorithms are iterative processes, i.e., they search for xt by generating and improving candidate
solutions. This is achieved by keeping a model of the problem, i.e., a set of assumptions about the relationship between input
3 The raw data from these tests are available at http://coco.gforge.inria.fr/doku.php.

http://coco.gforge.inria.fr/doku.php


230 M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245
and output variables. The model defines how the algorithm gathers, processes and stores information at each iteration.
Ideally, xt is found in finite time. However, an algorithm may converge prematurely when it generates candidates in a small
area of X , none of which is xt . Premature convergence is a direct consequence of the model [62].

The hundreds, perhaps thousands, of algorithms reported in the literature can be broadly classified as deterministic or
stochastic [21,129], depending on the model. Deterministic algorithms are based on rigorous formulations without random
variables. Therefore, their results are unequivocal and replicable for the same initial conditions. Their model relies on linear
algebra or computational geometry techniques. Most require the computation of a numerically stable estimator of the
Gradient or the Hessian, i.e., the first or second derivatives, of the function. Deterministic algorithms quickly converge
towards a local optimum [21]. It is common to re-start the algorithm at different, often random, locations to improve the
convergence towards a global optimum [129]. Deterministic algorithms can be broadly classified into three groups: line,
trust region and pattern search methods. On the other hand, stochastic algorithms rely on heuristics, statistical models
and random variables to find a global optimum. Although advances have been made on their theoretical underpinnings
[5], stochastic algorithms are less rigorously designed. However, they allow a more thorough exploration of X . Compared
with deterministic algorithms, they converge slowly towards the global optimum [22]. Stochastic algorithms can be broadly
classified into random search methods, simulated annealing, and population based algorithms. Table 1 summarizes the main
characteristics of each algorithm class.
Table 1
Main characteristics of the major algorithm families for black-box continuous optimization.

Deterministic algorithms
Family: Line search methods
Description: These methods generate new candidates, xiþ1, by searching along a direction Dx, i.e., xiþ1 ¼ xi þ Dx [21,129]. The simplest line search

method is gradient descent, which uses the first derivative at the current candidate, xi , as direction, i.e., Dx ¼ �.rf xið Þ, where . is the
step length. To improve convergence, the conjugate gradient method uses the current and previous candidates’ gradients to calculate

the direction [107]. In contrast, the Newton method uses the second derivative, i.e., Dx ¼ �. r2f xið Þ
h i�1

rf xið Þ, where r2f xið Þ is the

Hessian matrix. It is possible that r2f xið Þ is expensive to calculate exactly, but an approximation is sufficient to generate a direction.
These methods are known as Quasi-Newton. The most common are Broyden-Fletcher-Goldfarb-Shanno (BFGS), Davidon-Fletcher-
Powell (DFP), and Symmetric Rank 1 (SR1) [109]

Family: Trust region methods
Description: These methods assume that the function in the neighborhood of xi can be approximated by a linear or quadratic function, g xið Þ, whose

optimum correspond to xiþ1, i.e., rg xiþ1ð Þj j ¼ 0. The ratio between the real change in fitness, f xiþ1ð Þ � f xið Þ, over the estimated change
in fitness, g xiþ1ð Þ � g xið Þ, is compared against a threshold. If the ratio exceeds the threshold, xiþ1 is accepted as the new solution and
the neighborhood radius is decreased [110]. Otherwise, xiþ1 is rejected and the neighborhood radius is increased [21,129]. Perhaps the
earliest method of this type is the Levenberg–Marquardt algorithm [24]. Trust region methods are thought to be dual to line search
methods. On the former, the step size is selected first – the trust region – followed by the direction. On the later, the direction is
selected first followed by the step size [108]

Family: Pattern search methods
Description: These methods use a set of candidates around xi to direct the search [129]. The simplest of these methods is the coordinate search

algorithm. On each iteration, all the components of xi are fixed except for one, which is updated until a fitter value is found. This process
is carried out for all components in subsequent iterations. A more efficient method is the Nelder-Mead algorithm [21], which uses a
simplex, i.e., the D dimensional analog of a triangle with Dþ 1 vertices. The simplex is updated at each iteration by reflecting the vertex
with the lowest fitness, xiþ1. If the vertex continues to be less fit, the simplex is contracted by reducing the distance between xiþ1 and
xi . When the vertex improves, the simplex is expanded by increasing the distance between xiþ1 and xi . If one of the vertices does not
change over few iterations, its distance with xi is decreased [21]

Stochastic algorithms
Family: Random search methods
Description: These methods sample X using a fixed or adaptive probability distribution, usually normal or uniform [72,84]. Random search methods

converge with probability one to the global optimum when the sample size converges to infinity [129], and are computationally more
efficient than grid search [11]. An example of this type of methods is uninformed random picking [57]

Family: Simulated annealing methods
Description: These methods mimic the process in which a crystalline solid is heated and then allowed to slowly cool until it achieves its most

regular possible crystal lattice configuration [55,22]. Simulated annealing methods always select candidates with improved fitness.
However, they also allow the selection candidates with non-improving fitness; hence, providing means to escape local optima. The
probability of selecting non-improving candidates depends on the temperature parameter, which decreases at each iteration of the
algorithm [55]

Family: Population based algorithms
Description: These methods manipulate a group or ‘‘population’’ of candidate solutions simultaneously [58]. They are often inspired by a biological

phenomenon; hence, they are often called bio-inspired computing. These methods can be broadly classified into evolutionary and
swarm intelligence algorithms. Evolutionary algorithms use natural selection as a model of the optimization process. These algorithms
modify the population at each iteration, first by selecting the fittest members, and then exchanging information between two or more
candidates or by randomly modifying one or more candidates. Some popular methods are Genetic Algorithms [164], Evolutionary
Strategies [12], Estimation of Distribution Algorithms [52], and Differential Evolution [27]. On the other hand, swarm intelligence
algorithms emulate the collective behavior of self-organized and decentralized systems, e.g., ant colonies and fish schools. Some
popular methods are Ant Colony Optimization [30], Particle Swarm Optimization [31], Artificial Bee Colony [71], Bacteria Foraging
Algorithm [113], and Artificial Immune Systems [51]



M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245 231
The large algorithmic diversity also hides some unpleasant surprises, particularly in the stochastic algorithmic families. In
recent years, a stream of papers were published presenting novel methods inspired by some natural phenomenon.
Invariably, these papers demonstrate the superiority of the new method. Hence, they are followed with numerous follow
up papers showing the application of the new method to different sets of problems, always with exceptionally good results
[142]. However, it has been shown that several methods recycle well known ideas and their performance is overestimated
[25,116,155,163]. Teasing out the novelty of such methods is an arduous task, which should be carried out by the algorithm
authors [133]. However, it is often the case that their main area of research is not optimization but a specific application
[142]. It seems that metaphors have shifted from inspiration to justification for new algorithms [142], but instead of advanc-
ing the state-of-the-art, it obfuscates more important innovations in the field.

To sum up, the algorithm space’s diversity complicates the selection problem. Furthermore, the relationship between the
problem characteristics and the algorithm model is vague. Hence, practitioners often select, modify, hybridize, and even pro-
pose algorithms hoping to achieve an acceptable performance level. Such an approach assumes that any algorithm perform
efficiently on any relevant problem. However, this is not a valid assumption, as there is a theoretical set of algorithms, such
that each one of them solves a large subset of problems in F with the best possible performance [6].

5. Performance space: measures of algorithm performance

The third component of the algorithm selection framework is the performance space, P � R, which is the set of feasible
values of a measure of an algorithm’s robustness – how often is a quality solution found – or its efficiency – how many
resources are needed to find a quality solution [7]. A performance measure, q f ;að Þ, should be simple, quantitative,
well-defined, interpretable, reproducible, fair, and relevant to practice [7,48].

Fig. 5a illustrates both robustness and efficiency measurements, where the vertical lines represent fixed computational
resources (the number of function evaluations) and the horizontal lines represent fixed solution qualities (fitness values).
Robustness measures use fixed resources [7]. Hence, they are compatible with real world applications where resources
are limited [48]. However, robustness measures may be hard to interpret as finding a m-times fitter solution is linked to
the possible unknown problem difficulty [48]. On the other hand, efficiency measures use fixed solution qualities [7].
Hence, they are preferable for comparing algorithms. It is evident that an algorithm is superior if it reaches a target solution
m-times faster than any other [48].

There are several performance measures reported in the literature [7]. However, the expected running time, t̂, is the mea-
sure of choice for most benchmark comparisons [48,146]. An efficiency measure, t̂ estimates the average number of function
evaluations required by an algorithm to reach the target solution, yt , for the first time [121]. It is calculated over a number of
algorithm runs as follows:
Fig. 5.
evaluat
solution
the per
numbe
evaluat
t̂ðf ;a; ytÞ ¼
#FEs ybest P ytð Þ

#succ
ð2Þ
Measurements of algorithm performance. (a) Presents a plot of the solution quality, measured as the current fitness, against the number of function
ions for three algorithms in the same problem. The vertical lines indicate the limits on computational resources. The horizontal lines represent

quality targets. At the cutoffs defined by these lines, the Algorithm 3 is the best performing while Algorithm 1 is the worst performing. (b) Shows
formance of the same three algorithms now over a set of problems. The performance is measured as the percentage of solved problems for a given
r of log-normalized function evaluations, log10 t̂=D

� �
. A problem is solved if the algorithm reaches a solution quality target. The normalized number of

ions is on the horizontal axis, whereas the percentage of solved problems is on the vertical axis.



232 M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245
where #FEs ybest P ytð Þ is the number of function evaluations across all runs where the best fitness, ybest, is larger than the
target, and #succ is the number of successful runs. With censored runs, t̂ depends on the termination criteria. Additionally, t̂
can measure performance across a set of problems. For example, Fig. 5b illustrates the probability of solving a problem for a
given normalized budget, measured as log10 t̂=D. The probability plateaus when the problems cannot be solved. This repre-
sentation identifies whether an algorithm is more efficient than another on average, and how likely it is that the algorithm
will find a solution. In the figure, none of the algorithms solve all the problems. Algorithm 1 is the fastest of the three, but it
solves over 70% of the problems. Algorithm 2 is computationally more expensive, however, it solves nearly 90% of the prob-
lems. The worst performing is Algorithm 3, as it is the most computationally expensive, and solves slightly above 50% of the
problems.

The expected running time has two limitations: First, it requires a target, which may be unknown on a real world prob-
lem. However, yt can be defined as the minimum acceptable improvement over the best known candidate. Second, it requires
a sufficiently large number of algorithm runs to guarantee statistically significant results, which can be extremely time con-
suming depending on the problem [48]. The later limitation can be mitigated through bootstrapping [32].

Whichever measure is employed, performance is a random variable. It changes across problems, instances, even runs [47].
Furthermore, its probability distribution exhibits heavy-tailed behavior, which is ameliorated by restarting the algorithm
from random positions [42]. By controlling this behavior, performance can be modeled as a parametric distribution that
is totally described by few statistics, such as its mean and variance [62]. However, the performance distribution does not
provide insights on its dependency with the problem characteristics.
6. Characteristics space: exploratory landscape analysis methods

The fourth component of the algorithm selection framework is the characteristics space, C � Rm, defined by the set of
measures that provide information about the complexities of the problems, or the advantages and disadvantages of the algo-
rithms. As mentioned in Section 3.2, data driven methods, know as ELA methods, are the only valid approach to measure the
problem characteristics for BCOPs. ELA is an umbrella term for analytical, approximated and non-predictive methods
[53,66,86,91,104] originally developed for combinatorial optimization problems [137]. For BCOPs, the existing methods
are adaptations from their combinatorial counterparts [19,20,85,95,101,103,144,150], or purposely built for continuous
spaces [19,83,91,98,120].

The number of reported ELA methods is meager compared with the number of reported search algorithms [86,95,118],
due to the lack of clarity on the effects that the characteristics have on performance. Furthermore, the computational cost
of using an ELA method may be greater than running a search algorithm [9,53,137]. Therefore, the focus should be on meth-
ods that are easily defined and computed, based on established statistical methods [9,59,126]. Besides, it is useful to classify
these methods into types according to their focus as global or local [117], or as their sampling approach as unstructured or
structured.

Global methods process the complete sample to generate the final measure, providing an overview of the landscape struc-
ture while concealing information about the change of fitness between neighboring candidates [117]. Local methods split the
sample into groups of neighboring candidates. Each group is independently processed to produce a partial measure, which
goes through further processing to obtain a final result. Therefore, local methods evaluate the changes of fitness within
neighborhoods [117]. For example, Fig. 6 illustrates a multimodal function and a sample of eight candidates. Each candidate
has a neighborhood of size two or three, e.g., the neighborhood of x2 is x1;x2;x3f g. A global method might be the average

fitness of the eight candidates, i.e., c ¼ 1
8

P8
i¼1f xið Þ. On the other hand, a local method might be the sum over all neighbor-

hoods, of the average fitness over each neighborhood, i.e., c ¼ 1
2

P2
i¼1f xið Þ þ 1

3

P3
i¼1f xið Þ þ � � � þ 1

2

P8
i¼7f xið Þ.

Unstructured methods use a sample where each candidate can be considered an independent random variable.
Structured methods use a sample where each candidate may be dependent on one or more previous candidates. For example,
uniform sampling generates independent samples, while a random walk generates dependent samples. Furthermore, a
dependent sample may also be biased, i.e., there may be areas of X more densely sampled than others. This implies that
the samples used by either class are incompatible: the sample used by an unstructured method may not be suitable for a
structured one and vice versa. Also, the sample used by a structured method may not be suitable for another structured
Fig. 6. A multimodal function and a sample x1; . . . ;x8f g of eight candidates. Each candidate has a neighborhood of size two or three.



M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245 233
method. This difference is fundamental, as unstructured methods allow us to calculate different measures, regardless if they
are global or local.

Using these concepts, we classify the ELA methods in four types, as illustrated in Fig. 7:

Type I methods are global and unstructured; hence, they can be applied to a representative sample of the input space.
Type I methods are simple and scalable with D; however, they do not measure the probability of improving the
fitness by sampling within a neighborhood.

Type II methods are local and unstructured; hence, they can be applied to a representative sample. To define the neigh-
borhood, it is necessary to provide a radius, r, which depends on the problem and the sample distribution.
Therefore, selecting r is difficult. Additionally, calculating each neighborhood becomes intractable as the sample
size increases.

Type III methods are global and structured. Since the sample can be biased, it might not be possible to reuse it in other
methods. Hence, the computational cost increases with the number of methods employed. A preprocessing
method may remove the bias at an additional computational cost [101].

[Type IV methods are local and structured; hence, they posses the limitations of Types II and III.

Although a different classification criteria could be followed (for example the use of distance metrics), this classification
emphasizes the advantages of one type over the others. Arguably, combinations of Type I and II methods are preferable as the
computational cost is reduced by sampling once, which is advantageous with expensive sampling, e.g., when the problem
involves a real time process. Even if sampling is cheap, the computational cost of Type II, III or IV methods is not justifiable,
as it may be faster to run several algorithms in parallel. Table 2 summarizes the methods discussed in the following sections,
classified into types.

6.1. Type I: Global unstructured methods

A first set of type I methods assume that smooth landscapes have neighboring candidates with similar fitness; therefore,
these measures are indicators of the landscape modality and the global structure strength. Fitness distance correlation, FDC,
and Dispersion, DISP100e%, measure the relationship between the candidate’s location and its fitness [68,83]. FDC is calculated
using the Pearson correlation between d, which is the Euclidean distance to the fittest candidate from the sample X of size n
[95], and y. On the other hand, DISP100e% is the average distance between the � ¼ enb e lowest cost candidates from X, where
e 2 0;1½ �. DISP100e% is normalized over the diagonal of X . DISP100e% has the highest discrimination power when e! 0 and
D < 10 [99]. Both FDC and DISP100e% are invariant to translational shifts and orthogonal rotations on X , which are global
isometries of the Euclidean space and do not affect d. FDC has been applied in other domains besides BCOPs
[10,95,149,150,152], and DISP100e% demonstrated why the CMA-ES algorithm is ineffective in multi-funnel, multimodal prob-
lems [83].
Fig. 7. Classification of the ELA methods into four types depending on the concepts of order and neighborhood. The arrow indicates the direction that the
computational effort increments, and how this increment depends on the type.



Table 2
Summary of the ELA measures employed in this paper.

Type Method Measure Description

I Fitness distance correlation FDC Fitness distance correlation
Dispersion DISP100e% Dispersion of level e
Probability density function c Yð Þ Skewness

j Yð Þ Kurtosis
H Yð Þ Entropy

Surrogate modeling R2
L

Adjusted coefficient of determination of a linear regression model

R2
LI

Adjusted coefficient of determination of a linear regression model plus interactions

R2
Q

Adjusted coefficient of determination of a purely quadratic regression model

R2
QI

Adjusted coefficient of determination of a quadratic regression model plus interactions

min bLð Þ Minimum of the absolute value of the linear model coefficients
max bLð Þ Maximum of the absolute value of the linear model coefficients
CN Ratio between the minimum and maximum absolute values of the quadratic term coefficients

in the purely quadratic model
Cross-validated classification error of the level-set model

Information significance n Dð Þ Significance of order k

e kð Þ Entropic epistasis of order k

Length scale pr Dy= Dxk kð Þ Probability density function of Dy= Dxk k

II Fitness sequences Hmax Maximum information content
�S Settling sensitivity
M0 Initial partial information

Evolvability Ea Evolvability
Pi Average escape probability
NSC Negative slope coefficient
AEP Accumulated escape probability

III Probability of convexity Ratio between the number of solution pairs for which the difference between their estimated
and real cost is less than a threshold, and the total number of pairs

IV Fitness sequences ACFs Auto-correlation function
‘ Correlation length

ACF Average auto-correlation

Basin sizes and distribution �b Average basin size
Average distance between local optima
Size of the largest and fittest basins
Distance between the largest and fittest basins

Curvature pr rfj jð Þ Probability density function of the gradient norm
Probability density function of the Hessian condition number

234 M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245
A second set of methods measure the landscape modality and the global structure strength using an estimation of the
probability density function (pdf) of Y [16,130]. For a piecewise invertible function, the pdf of Y is related to the first deriva-
tive by the Perron-Frobenius operator:
pdf yð Þ ¼
X

x2f�1 yð Þ

pdf xð Þ
f 0 xð Þ
�� �� ð3Þ
This implies that by characterizing the pdf of Y through its skewness, c Yð Þ, kurtosis, j Yð Þ, number of peaks, and entropy,
H Yð Þ [90,91], we obtain some information about the magnitude of the gradient of f.

A similar method characterizes the pdf of the difference in fitness, yi � yj, over the difference in position, xi � xj

�� �� [98].
The pdf is summarized using the entropy. The authors suggest sampling using a Lèvi flight, as it produces clusters of candi-
dates uniformly distributed over X; hence, it is thought to provide good coverage of X .

A third set of methods use the fit of a regression or classification model as a measure of the landscape modality and global
structure strength. The fit of a linear or quadratic regression model can be thought of as the distance to a reference problem
[45,91], and it is evaluated using the adjusted coefficient of determination, R2. Moreover, variable scaling is measured using
the maximum and minimum of the absolute value of the coefficients from the linear model without interactions, and the
ratio between the minimum and the maximum absolute values of the quadratic term coefficients of a quadratic model with-
out interactions [91].

For a classification model, the output sample is divided into two classes using a threshold, e.g., the lower or upper quar-
tiles of the fitness distribution. According to [91], an unimodal function could be cleanly cut by the hyperplane defined by a
linear or quadratic classifier, whereas a multimodal function could only be cleanly cut by a non-linear classifier. The fit is
evaluated using the cross-validated miss-classification rate [91].

A fourth set of methods focuses on variable dependencies, i.e., the ease in which f can be broken down into simpler prob-
lems of lower D [92]. Most methods focus on linear interactions [28,37,105,124,127,128], e.g., the fit of a linear model with



M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245 235
interaction terms [91]. However, non-linear interactions may be expressed as the joint probability of a subset of variables,
and measured using mutual information [132]. Let V ¼ 1; . . . ;Df g be a set of variable indexes, where v 2 V is the index of a
variable, and V � V is a combination of variables. The significance of V ; n Vð Þ, is the ratio between the mutual information,
I XV ; Yð Þ ¼ H XVð Þ þ H Yð Þ � H XV ;Yð Þ, and the cost entropy, H Yð Þ. This ratio is also known as the uncertainty coefficient or
Theil’s U. The epistasis of a combination V ; e Vð Þ, is calculated as follows:
Fig. 8.
dashed
e Vð Þ ¼ I XV ; Yð Þ �
P

v2V I Xv ; Yð Þ
I XV ; Yð Þ ð4Þ
The results are summarized using the average significance, n kð Þ, and average epistasis, e kð Þ, of order k, where k ¼ Vj j.

6.2. Type II: Local unstructured methods

The first type II method analyzes a sequence of fitness values, S ¼ y1; . . . ; ynf g, obtained by sorting a uniformly distributed
sample [103]. The starting element in the sequence is a candidate from the sample selected at random, while the remaining
elements in the sequence are selected using the nearest neighbor heuristic, i.e., the element whose Euclidean distance is the
lowest to the current element. To avoid backtracking, any candidate already in the sequence is excluded from the nearest
neighbor calculations. Known as ICOFIS, it is an adaptation of the method described in [85,144,153], where a random walk
is used to collect the sample and generate the sequence, instead of sorting a uniformly distributed random sample. However,
this approach biases the sample unless n!1 [103]. A bias correction method, such as stratified or weighted sampling
[26,101,170], is needed when a random walk with n�1 is used.

Let U �ð Þ ¼ /1; . . . ;/n�1f g be a symbol sequence where /i 2 �1;0;1
� �

, converted from S by following the rule:
W i; �ð Þ ¼

�1 if Dy
Dxk k < ��

0 if Dy
Dxk k

���
��� 6 �

1 if Dy
Dxk k > �

8>>><
>>>:

ð5Þ
where Dy is the difference between yiþ1 and yi; Dxk k is the Euclidean distance between xiþ1 and xi, and �P 0 is a sensitivity
parameter that sets the accuracy of U �ð Þ. For example, U 0ð Þ has a zero if and only if there are neutral areas in the landscape.
On the other hand, U �ð Þ is all zeros if � is larger than the maximum Dy. The method accounts for the uncertainty added by the
step size represented by Dxk k. The value of Dy

Dxk k converges to the derivative if Dxk k ! 0. Two consecutive symbols compose a

block, which represents a slope, peak or neutral area in the landscape. The information content of S is defined as
H �ð Þ ¼ �

P
a–bpablog6pab, where a; b 2 �1;0;1

� �
and pab is the probability of finding the block ab in the symbol sequence.

The logarithm base is six because this is the number of possible blocks where a – b. H �ð Þ is bound between 0;1½ �, and
0log60 � 0.

The result from H �ð Þ is not an explicit measure of the landscape smoothness [153]. For this purpose, a new sequence,
U0 �ð Þ, is constructed from U �ð Þ by removing all the zeros and repeated symbols. U0 �ð Þ has the form ‘‘. . . �11�11�1 . . .’’ and rep-
resents the changes in concavity encountered during S. The partial information content, M �ð Þ, characterizes the landscape

smoothness [153] and it is equal to M �ð Þ ¼ U0j j
n�1 with n	 1. The results are plotted against � resulting in the curves in

Fig. 8, which are summarized by the following measures: Maximum information content, Hmax ¼max� H �ð Þf g, settling sen-
sitivity, �S ¼ log10 min� � : H �ð Þ < 0:05f gð Þ, initial partial information, M0 ¼ M � ¼ 0ð Þ. The three measures correspond to
points on the H �ð Þ and M �ð Þ curves as illustrated on Fig. 8. At Hmax;U �ð Þ has the highest diversity. Hence, rugged landscapes
are expected to have high value of Hmax [85]. At �S;U �ð Þ is nearly all zeros. Hence, it represents the maximum change of fit-
ness found during S and indicates the scaling of the problem. Furthermore, �S is strongly correlated (
 0:96) to the entropy of
the fitness pdf, H Yð Þ [103]. At M0;U �ð Þ has the highest number of inflexion points, providing information about the landscape
ruggedness. The accuracy of the measures increases with the number of distinct values of � used.
−5 0 5 10
0

0.2

0.4

0.6

0.8

1
H(ε)
M(ε)
Hmax
εS
M0

Typical curves for H �ð Þ and M �ð Þ and their derived measures. The horizontal axis represents the sensitivity parameter � on a log10 scale. The black
lines are visualization aids.



236 M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245
A second set of measures is based on the estimated escape probability, or evolvability, of a fitness landscape, Ea, which is
loosely defined as the ability of an individual or population to generate fitter candidates [135]. More formally, evolvability is
defined as the probability that a fitter candidate can be found within a candidate’s neighborhood [135] as follows:
Ea yið Þ 

y : y 2 N r yið Þ; yi P yf gj j

N r yið Þj j ð6Þ
Therefore, high evolvability means that there is a high probability of finding a fitter candidate within the neighborhood.
Hence, a search algorithm is likely to be successful in exploring the landscape. On the other hand, low evolvability means
that it is unlikely that fitter candidates will be found within the neighborhood. Therefore, a search algorithm will find dif-
ficult to explore the landscape efficiently. There are three methods that use the concept of evolvability to analyze a land-
scape: The evolvability portrait, which is a plot of Ea against yi [135]; the fitness–fitness cloud, which is a plot of the
fitness of the neighbors against yi [151]; or a fitness–probability cloud, which is a plot of the average escape probability,
Pi, against yi [82], with Pi calculated as follows:
Pi ¼
P

yj2Ci
Ea yj

� �

Cij j
ð7Þ
where Ci ¼ yjy P yif g, i.e., Pi is the average evolvability of all the candidates with worse fitness than the current candidate.
Ideally, a smooth trend should be observed on these plots from the unfit to the fitter candidates. The trend may be summa-
rized by the negative slope coefficient [151], NCS, for the fitness–fitness cloud, and the accumulated escape probability [82],
AEP, for the fitness–probability cloud. Although both measures are simple to calculate, they are impractical due to their high
computational cost and dependency to the neighborhood radius, r.

6.3. Type III: Global structured methods

Type III methods are perhaps the less common type reported in the literature. An example of these methods measures the
probability that the space between two candidates is convex [91]. A candidate xk is generated using a linear combination of
two other candidates, xi;xj

� �
, and its fitness, ŷk, is estimated using a convex combination of yi; yj

� �
. The probability of con-

vexity is defined as the ratio between the number of xi;xj
� �

combinations for which the difference between yk and ŷk is less
than a threshold, and the total number of xi;xj

� �
combinations.

6.4. Type IV: Local structured methods

A first set of type IV methods analyze a sequence of fitness values, S, obtained from a random walk over X . This includes
the original ICOFIS [85,144,153], the structured version of the type II method presented in Section 6.2. The auto-correlation
function of S;ACFs, is one of the earliest proposed ELA methods [160]. It is calculated as follows [93]:
ACFs ¼
1

r̂2
y n� sð Þ

Xn�s

i¼1

yi � �yð Þ yiþs � �y
� �

ð8Þ
where s is the number of delays over which the auto-correlation is calculated, �y is the mean fitness, and r̂2
y is the sample

fitness variance. It has been suggested that ACF1, also known as correlation length or nearest neighbor auto-correlation, cap-
tures the landscape smoothness efficiently [143]. Assuming that ACFs is an exponential function of s, the normalized corre-

lation length, ‘, is zero if ACF1 is zero. Otherwise, ‘ ¼ � ln ACF1j jð Þ�1. A high value of ‘ implies that a local search finds a high
fitness solution after a high number of function evaluations [93], whereas a low value of ‘ implies that the algorithm con-
verges prematurely on low fitness solutions. It was thought that ACFs, plus the mean and variance of the fitness pdf, would
completely characterize a landscape [161]. However, it has been demonstrated neither ACF nor ‘ are sufficient to characterize
all landscapes [118].

For continuous optimization problems, ACF has been defined as [90]:
ACF rð Þ ¼ 1
r2

y

1
N rj j

X
xi ;xjð Þ2N r

yiyj � yi þ yj

� �
�yþ �y2� �

; ð9Þ
where N r xð Þ ¼ xi : xi � xk k ¼ rf g. Over a set of values of r;R, the average auto-correlation is defined as the sum of ACF rð Þ
over the cardinality of R. With a uniformly distributed random sample, it is unlikely that N r xið Þj j 	 1 for any r. Hence, can-
didates are sampled in pairs. The first one is selected from anywhere in X , while the second is selected at a distance of r 2 R
from the first.

A second set of type IV methods estimate the pdf of the size of the basins of attraction, B xlð Þj j, defined as the volume from
X occupied by each basin [40]. As described in Section 3.2, to estimate the size of a basin, a local search starts from a random
candidate in X , stopping only when it converges to a local optimum. After carrying out n local searches, a basin is observed if
at least one search has converged to it. Fig. 9a illustrates the results for the Six-hump Camel-back function. The function is



(a) (b) Probability distribution of basin sizes

Fig. 9. Basins of attraction for the Six-hump Camel-back function estimated using a local search method [40]. (a) Is a contour plot, where each mark
represents one of 2000 candidates used as starting points for the local searches, their color representing one of six observed basins. (b) Is the best-fitting
gamma distribution of the basin volume, measured as a percentage of X . (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245 237
presented a contour plot, where each mark represents one of 2000 candidates used as starting points for the local searches,
their color representing one of six observed basins.

The volume of an observed basin could be estimated as the percentage of candidates that where drawn to its local optima.
However, this ignores the volume of potentially unobserved basins. For this purpose, a gamma [40] or exponential [17] pdf is
fitted to the data, as illustrated in Fig. 9b for the Six-hump Camel-back function. In the figure, the horizontal axis represents
the volume of the basin measured as a percentage of X . Let �b be the average basin volume, which is estimated as follows:
�b ¼
1� 1þ #

c0

� 	c0

a
ð10Þ
where c0 is the parameter from the best fitting gamma distribution. According to [40], Eq. (10) has a solution at # equal to the
ratio between the sample size and the total number of basins. To improve the estimation, non-parametric method may be
used for large input spaces [123]. Alternatively, a random walk may be used instead of the local search [3]. Furthermore, the
size, number and location of the local optima are used to calculate additional measures: the average distance between local
optima [19,158], and the size and distance between the largest and fittest basins [19].

These methods are expensive, as they require numerous function evaluations. For example, for the 2000 candidates illus-
trated on Fig. 9, nearly 2:6� 105 function evaluations were used in the local searches. Alternatively, only the starting points
may be used to estimate the number of basins [101]. Using a Delaunay triangulation, a network is constructed in which the
local search is carried out. Although the cost in function evaluations decreases, calculating the Delaunay triangulation is
computationally expensive for D > 3, and limited to D � 8.

A third set of type IV methods measures the function curvature by numerically estimating the Gradient and Hessian at
each candidate, using extrapolation [91] or finite differences. The results are summarized using the pdf of the Euclidean
norm of the gradient and the condition number of the Hessian.
6.5. Discussion

In summary, ELA methods attempt to quantify the landscape complexity, focusing on the characteristics described on
Section 3. Some methods use a specific sampling procedure. Others require information about the candidates’ neighborhood.
Hence, ELA methods range from computationally simple (type I) to complex (type IV).

ELA methods are not exempt from criticisms. First, most of the work attempts to provide a single, all encompassing, mea-
sure of complexity. This approach is optimistic, as it is the interplay between characteristics that defines difficulty. As such,
several complementary measures are necessary [10,95,135]. Second, ELA methods require a large sample to be precise
[66,95,149]. The sample size grows exponentially with D; hence, ELA methods are imprecise in polynomial time [53].
However, as ELA methods are rooted in statistical analysis, their uncertainty can be estimated using resampling methods.
Fewer function evaluations may be needed if the methods are used during an algorithm run [104]. However, the bias
imposed by the algorithm must be corrected to avoid deceiving results [101].



238 M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245
Third, it is unclear whether the existing methods are sufficient, even necessary. Since the difficulty of a problem is relative
to the algorithm used [54], an ELA method lacks utility if it fails to provide information about the strengths and weaknesses
of any algorithm. However, there is evidence that even type I methods are sufficient to identify a good algorithm for a given
optimization problem [1,14,91,102,103]. We discuss these contributions in the following section.
7. The selection framework and related techniques for black-box continuous optimization problems

The algorithm selection framework based on the work of Rice [125] has been applied in many domains, including com-
binatorial auctions [39,74,75], clustering [2,77,76,148], feature selection [157], graph coloring [138,141], mixed integer pro-
gramming [65,168], planning [61], program induction [44,45], quadratic assignment [136], satisfiability [39,62,65,69,87–
89,166], scheduling [9,139], time series [46], the traveling salesman problem [65,70], among other domains [73,137].
Most of these works use one of two alternative implementations of a meta-model, both illustrated in Fig. 10 using a set
of four algorithms as example. The first uses a classification model [125]. The second uses a regression model per algorithm
to learn the map gi : C ! P [75]. For both approaches, it is required a knowledge base containing the characteristics of all
problems in a subset, F � F , and the performance of all algorithms in a subset, A � A, for all problems in F. Both models
are trained using the characteristics as input patterns. The classification model uses the best performing algorithm as the
output pattern. The regression models use the performance measure as the output pattern, and a sorting method selects
the algorithm with the best predicted performance.

There are trade-offs associated with each implementation. The classification model is monolithic; hence, it has fewer ele-
ments prone to failure than the regression model. However, adding or removing algorithms imply the re-training the clas-
sification model, whereas the regression model is modular. Another trade-off is a consequence of an algorithm failing to
produce a solution a problem in F within the computational budget. Therefore, the algorithm run has been censored. The
results from these runs leave gaps in the knowledge base, affecting the data quantity for regression models. To fill in the
gap, the budget can be used as the real-run time, or as a lower bound used to estimate the real run-time [131]. However,
censoring is not an issue for a classification model, if there is at least one algorithm that produces a solution for every prob-
lem in F.

In the BCOP domain, there is a paucity of work examining the algorithm selection problem or describing applications of
Rice’s framework [125]. For example, Francois and Lavergne [38] used a regression model to predict the performance of an
Fig. 10. Diagram of two approaches to construct a meta-model using experimental data and machine learning techniques. The models relate two
components of the algorithm selection framework illustrated in Fig. 1: the characteristics and algorithm spaces.



M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245 239
evolutionary algorithm. The inputs to this model were limited to the algorithm’s parameters. Although Francois and
Lavergne hinted that problem classes could be related to performance, they did not provide any detail into how to determine
such classes. Therefore, a new model had to be trained for each problem, limiting its application in realistic scenarios.

More recently, Bischl et al. [14] used a cost sensitive learning model to select the best algorithm between BFGS,
BIPOP-CMA-ES, LSstep, and LSfminbnd. This type of models is trained to produce accurate performance predictions for
the best algorithm only. The knowledge base was composed of 360 problem instances, drawn from the Comparing
Continuous Optimization (COCO) benchmark set [49] at ten dimensions, which was deemed as a representative dimension-
ality. Each problem was characterized using 19 measurements, extracted using a mixture of type I, III and IV ELA methods.
Additionally, the set of four algorithms was manually selected using the complete knowledge base. The model was verified
using two cross-validation approaches. In the first one, five instances from each problem were used as test set; hence, the
accuracy on unobserved instances of observed problems is estimated. On the second approach, all the instances from one
problem were used as test set; hence, the accuracy on unobserved problems is estimated. However, their set of four algo-
rithms was manually selected using the complete knowledge base, weakening the validation on unobserved problems.
Furthermore, the results may not be generalizable for a knowledge base with problems of different dimensionalities.

In previous work [102], we have used a regression model to identify the best out of eight parameter combinations for the
CMA-ES algorithm. The knowledge base was composed of 1800 problem instances, drawn from the COCO benchmark set at
2;3;5;10;20f g dimensions. Each problem was characterized using seven type I measurements and four parameters. Among

the predictors was the target precision, included to minimize the gaps in the database due to censoring. However, this
approach resulted in a model that often underestimated the performance on the hardest problems. Furthermore, with a sam-
ple size of n 
 105 � D, the ELA measurements were too expensive to be practical. During validation, we compared the mod-
el’s accuracy against randomly selecting a configuration on unobserved instances of observed problems only.

Abell et al. [1] employed ISAC, a configuration method for portfolios of SAT solvers [69], to select the best performing
algorithm from a group of 21 algorithms for the COCO benchmark set. The knowledge base was composed of 1289 problem
instances at 2;3;5;10;20;40f g dimensions, which excluded all instances with censored runs. The core of ISAC is a classifi-
cation model, which uses ten characteristics as predictors, seven of which are extracted using type I and IV ELA methods.
Therefore, the best performing selector required nearly 50 times more function evaluations than the baseline algorithm.
Furthermore, the validation was limited to unobserved instances of observed problems.

These works demonstrate that the weakest link on the framework’s application is the computational cost of the ELA
methods. However, the selection framework is one of several related approaches, which aim to improve the performance
by combining algorithms with different strengths. Perhaps, the simplest one is to run sequentially or in parallel a set of algo-
rithms [41]. These algorithm portfolios aim to improve the performance by distributing the available resources among mul-
tiple algorithms as efficiently as possible [115]. For example, Montez de Oca et al. [96] identified and combined three fast and
reliable PSO variants. Vrugt et al. [156] interleaved five meta-heuristics – CMA-ES, GA, PSO, DE and PCX. Peng et al. [115]
distributed the function evaluation budget between the algorithms, and used a migration scheme to exchange information
between algorithms. Statistical tests were used to identify and stop prematurely convergent algorithms, whose function
evaluation budget was redistributed over the remaining ones.

Algorithm portfolios are closely related to hybrid meta-heuristics [15,154] and hyper-heuristics [47,112]. In the former,
one or more algorithms are interleaved with the aim to produce synergies between them [15,154,156]. For example, a
memetic algorithm pairs a population-based search method, usually an evolutionary algorithm, with a local refinement
method, often a line search [23]. Hyper-heuristics construct algorithms by adding components to an ‘‘empty’’ one, or by
improving iteratively a randomly generated initial algorithm [47,112]. The hyper-heuristic may be constructed on-line,
i.e., while the problem is being solved, or off-line, i.e., the best performing hyper-heuristic over a set of problem instances
is selected from a group [112]. Statistical racing can be thought of as an off-line hyper-heuristic. This method evaluates a
set of candidate algorithms on a stream of instances, where an algorithm drops out from the race when sufficient evidence
is collected against it [13].

Parameter tuning and control refers to the methods employed to automatically adjust the algorithm parameters [33,35].
Tuning aims to find a parameter set applicable to a wide range of optimization problems. Hence, it can also be thought of as
an off-line hyper-heuristic. Tuning involves experimenting with different parameter sets over a suite of test problems, and
selecting the best performing. Tuning has some drawbacks [29,33,34,114]: First, the parameters are mutually dependent and
systematically testing all combinations is impractical. Second, even if the tuning effort was significant, the resulting param-
eters are not necessarily optimal for all problems. Third, tuning ignores the fact that an algorithm run is a dynamic and adap-
tive process. Fourth, it is unclear whether perceived similarity between problems implies similar optimal parameter set.
Fifth, when a theory-based tunning approach is used, the complexities of the search and characteristics of the problems must
be notably simplified.

On the other hand, control refers to the methods for adjusting the parameters during the run, potentially improving them
while solving the problem [33]. These methods leverage the information accumulated about the problem during the search.
Hence, they can be thought of as an on-line hyper-heuristic. For effective parameter control, only the most influential param-
eters should be adjusted. Arguably, control methods are a good example of over-engineering an already sophisticated adap-
tive system [29], or that control techniques introduce new selectable parameters to the algorithm [114]. Furthermore,
control methods are against the principle of self-organization [134].



240 M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245
Algorithm portfolios, hybrid meta-heuristics, and hyper-heuristics have common disadvantages. They neglect the infor-
mation collected on previous experiments, and they do not examine the similarity between the current problem with others
previously observed [23]. Therefore, they fail to provide deeper insight into the relationship between problem structure and
algorithms. As such, they are themselves black-boxes treated with suspicion by the users, who distrust anything that gives
solutions without justifications [94]. Furthermore, they are subject to the NFLT [165], i.e., a method might work for some
problems but fail in others [15]. Hence, the process of designing, selecting and adjusting search algorithms for BCOPs is cum-
bersome, requiring expert knowledge on several algorithms, and skills in algorithm engineering and statistics [15]. In other
words, it remains an art rather than a science [97].
8. Conclusions and further research avenues

The problem of algorithm selection, that is identifying the most efficient algorithm for a given computational problem, is
a non-trivial task. In this paper, we have presented a detailed review of key concepts, methods and evaluation techniques for
algorithm selection for BCOPs. The algorithm selection framework proposed by Rice [125] was described in detail. This was
followed by a description of the four components – problem, algorithm, performance and characteristic – couched in terms
of the requirements for continuous optimization problems. Next, we proposed a classification of ELA methods based on com-
putational costs and their focus on global or local information, and the sampling technique employed (unstructured and
structured). Then, we discussed applications of the framework in the BCOP domain. Finally, the relationship between the
algorithm selection framework and algorithm portfolios, hybrid meta-heuristics, and hyper-heuristics was also discussed.
In the remainder of this section, we identify remaining challenges and propose future research directions.

The algorithm selection problem is ill-defined due to the complexity and size of the problem and algorithm spaces. Hence,
a formal solution to the algorithm selection problem may not exist. Similar ill-defined problems are solved using decision
support systems (DSS), i.e., computational systems that leverage data and models. The selection framework fits into this
description, and it would bridge the gap between the collection and usage of experimental data [56] existing on related
approaches such as hyper-heuristics. Furthermore, the framework may identify relative strengths and weaknesses of the
algorithms [140]. Besides the limitations identified on [1,14,102], the BCOP domain adds challenges to the implementation
of the DSS, most of them absent in other domains.

It is unclear, particularly for stochastic algorithms, how their performance is affected by the problem characteristics.
Although theoretical analysis of stochastic algorithms has advanced significantly in the latest few years [5,67,106], it is still
limited to simplified problems [111]. Nevertheless, theoretical insights clarify the effects of the problem characteristics,
which in turn would focus the development of ELA methods.

Furthermore, there is limited, if any, information about the problem instance available beforehand in a BCOP. Gathering
sufficient and accurate information through ELA methods requires numerous function evaluations, on top of the ones
required by the search algorithm. Hence, performance of the DSS is affected by the accuracy of the characteristic measures
in two ways. Assuming that accurate measures reduce the selection error of the DSS, we could collect a large sample to cal-
culate the measures as accurately as possible, leaving a small proportion of the function evaluation budget for the search. On
the other hand, assuming that more than one algorithm may solve the problem, we could allow a higher error on the mea-
sures by collecting a smaller sample, leaving a larger proportion of the budget for the search. The balance between measure
accuracy and search budget is equivalent to the exploration/exploitation balance.

Ideally, the cost of calculating the measures should be encapsulated within the search budget. This may be achieved by
restarting the algorithm from the sample instead of random positions, as described in Section 5, improving simultaneously
the heavy-tailed behavior of the performance [42]. Alternatively, the selection could be parallel to the search. A possible
implementation of such a DSS, illustrated on Fig. 11, has two feedback loops. In the analysis loop, data from the problem
is used to estimate the measures and predict the best algorithm. In the optimization loop, data from the problem is used
in the algorithm portfolio to generate new candidates. The selection mechanism acts as a switch that allows a candidate
to be evaluated if it corresponds to the selected algorithm.

The portfolio may initialize the algorithms in parallel, and then switch them on and off as data is collected. A first set of
measures can be made during the algorithm initialization stage, which are improved during the search. However, the bias on
the measures increases as the search progresses, because the candidates are generated from limited areas of the input space.
This is perhaps the most difficult limitation to overcome if the system is to be implemented.

Most ELA methods are heuristics; hence, the evidence supporting their theoretical soundness is scarce. Hence, it may be
unproductive to spend most of the budget on the ELA methods. Allowing a higher error on the measures requires an under-
standing of the error magnitude and its impact on the DSS performance, which may be significant. Such understanding could
be gained by analyzing the measures as random variables dependent on the problem instance, f, and sample size, n. The error
is represented by the variance, which should converge to zero when n!1, otherwise it depends on f and n. Studies of the
stochastic convergence of each measure are dependent on f; hence, they may lack practical relevance. However, more prag-
matic approaches may uncover flaws on the ELA methods. For example, in [103], bootstrapping, significance tests, and
meta-analysis techniques demonstrated that some measures had the same value regardless of the problem instance, sample
size or dimension. Accuracy analysis is lacking for most ELA methods, even though it should be an integral part of the
validation.



Fig. 11. Proposed structure for an on-line algorithm selection system, which has two feedback loops: In the analysis loop, the Decision Support System
selects an algorithm from the portfolio. In the optimization loop, the portfolio generates new candidates.

M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245 241
Similarly, due to their questionable theoretical soundness, an ELA method may include assumptions that are incorrect or
limiting. For example, several ELA methods use Euclidean distance to measure differences between candidates. However,
this distance metric quickly converges to a constant value as the dimension increases [99]. Challenging these assumptions
may lead to theoretical sound methods. Alternatively, there may be other mathematic fields which have studied the problem
of characterizing a function. Inspiration for new ELA methods could be drawn from fields such as topology and differential
geometry.

Although there are calls to adapt methods from discrete to continuous search spaces [86], the results may be unsatisfac-
tory due to the lack of clearly defined neighborhoods. For example, in [101] a cheaper estimator of the size of the basins of
attraction [17,19,40,123,158] was proposed. The neighborhood was defined using Delaunay triangulation, limiting the
method to lower dimensions. Although a binary partition would address this limitation, a parameter is added to control
the neighborhood size. Hence, the resulting measures would be dependent on this parameter, along with f and n.

The work in [1,14,102] is limited by the size of the knowledge base, which could be expanded by adding of new instances.
One approach is to collect instances from libraries such as CUTEst [43]. However, this does not guarantee that the new
instances are dissimilar with the ones already existing in the knowledge base. Alternatively, new instances may be evolved
using a generator [140]. A visual representation of the problem space would be useful to identify empty areas. This repre-
sentation should maintain the neighborhood structure existing in high dimensions. Furthermore, the generator should have
sufficient flexibility to push the instances towards these areas.

Acknowledgements

This paper is a revised, updated and expanded version of [100]. Funding was provided by The University of Melbourne
through MIRS/MIFRS scholarships awarded to Mario A. Muñoz, and the Australian Research Council through Grant No.
DP120103678. We thank Prof. K. Smith-Miles for her valuable comments.

References

[1] T. Abell, Y. Malitsky, K. Tierney, Features for exploiting black-box optimization problem structure, in: Proceedings of the 7th International Conference
on Learning and Intelligence Optimization (LION7), Lect. Notes Comput. Sci., 2013, pp. 30–36.

[2] S. Ali, K. Smith, On learning algorithm selection for classification, Appl. Soft Comput. 6 (2006) 119–138.
[3] E. Anderson, Markov chain modelling of the solution surface in local search, J. Oper. Res. Soc. 53 (6) (2002) 630–636.
[4] C. Ansótegui, M. Sellmann, K. Tierney, A gender-based genetic algorithm for the automatic configuration of algorithms, in: Proceedings of the 15th

International Conference on Principles and Practice of Constraint Programming, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 142–157.
[5] A. Auger, B. Doerr, Theory of Randomized Search Heuristics, World Scientific, 2011.
[6] A. Auger, O. Teytaud, Continuous lunches are free plus the design of optimal optimization algorithms, Algorithmica 57 (1) (2010) 121–146.
[7] T. Bartz-Beielstein, Experimental Research in Evolutionary Computation, Natural Computing Series, Springer, Berlin, Heidelberg, 2006.
[8] T. Bartz-Beielstein, C. Lasarczyk, M. Preuß, Sequential parameter optimization, in: The 2005 IEEE Congress on Evolutionary Computation, vol. 1, 2005,

pp. 773–780.
[9] J. Beck, E. Freuder, Simple rules for low-knowledge algorithm selection, in: Integration of AI and OR Techniques in Constraint Programming for

Combinatorial Optimization Problems, Lect. Notes Comput. Sci., vol. 3011, Springer, 2004, pp. 50–64.
[10] J. Beck, J. Watson, Adaptive search algorithms and fitness–distance correlation, in: Proceedings of the Fifth Metaheuristics International Conference,

2003, pp. 1–6.
[11] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J. Mach. Learn. Res. 13 (1) (2012) 281–305.

http://refhub.elsevier.com/S0020-0255(15)00368-0/h0010
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0015
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0020
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0020
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0020
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0025
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0025
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0030
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0035
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0035
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0045
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0045
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0045
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0055


242 M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245
[12] H. Beyer, H. Schwefel, Evolution strategies: a comprehensive introduction, Nat. Comput. 1 (1) (2002) 3–52.
[13] M. Birattari, Z. Yuan, P. Balaprakash, T. Stützle, F-Race and iterated F-Race: an overview, in: T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuß

(Eds.), Experimental Methods for the Analysis of Optimization Algorithms, Springer, Berlin, Heidelberg, 2010, pp. 311–336.
[14] B. Bischl, O. Mersmann, H. Trautmann, M. Preuß, Algorithm selection based on exploratory landscape analysis and cost-sensitive learning, in:

Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, ACM, New York, NY, USA, 2012, pp.
313–320.

[15] C. Blum, J. Puchinger, G. Raidl, A. Roli, Hybrid metaheuristics in combinatorial optimization: a survey, Appl. Soft Comput. 11 (6) (2011) 4135–4151.
[16] Y. Borenstein, R. Poli, Fitness distributions and GA hardness, in: Proceedings of Parallel Problem Solving from Nature (PPSN VIII), 2004, pp. 11–20.
[17] C. Brooks, E. Durfee, Using landscape theory to measure learning difficulty for adaptive agents, in: E. Alonso, D. Kudenko, D. Kazakov (Eds.), Adaptive

Agents and Multi-Agent Systems, Lect. Notes Comput. Sci., vol. 2636, Springer, 2003. 561-561.
[18] E. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, R. Qu, Hyper-heuristics: a survey of the state of the art, J. Oper. Res. Soc. 64 (12) (2013) 1695–1724.
[19] P. Caamaño, F. Bellas, J. Becerra, R. Duro, Evolutionary algorithm characterization in real parameter optimization problems, Appl. Soft Comput. (0)

(2013).
[20] P. Caamaño, A. Prieto, J. Becerra, F. Bellas, R. Duro, Real-valued multimodal fitness landscape characterization for evolution, in: Neural Information

Processing. Theory and Algorithms, Lect. Notes Comput. Sci., vol. 6443, Springer, 2010, pp. 567–574.
[21] M. Cavazzuti, Deterministic Optimization, Springer, Berlin, Heidelberg, 2013 (Chapter 4).
[22] M. Cavazzuti, Stochastic Optimization, Springer, Berlin, Heidelberg, 2013 (Chapter 5).
[23] X. Chen, Y. Ong, M. Lim, K. Tan, A multi-facet survey on memetic computation, IEEE Trans. Evol. Comput. 15 (5) (2011) 591–607.
[24] A. Conn, N. Gould, P. Toint, Trust Region Methods, Society for Industrial and Applied Mathematics, 2000.
[25] A.D. Corte, K. Sörensen, Optimisation of gravity-fed water distribution network design: a critical review, Eur. J. Oper. Res. 228 (1) (2013) 1–10.
[26] C. Cortes, M. Mohri, M. Riley, A. Rostamizadeh, Sample selection bias correction theory, in: Algorithmic Learning Theory, Lecture Notes in Computer

Science, vol. 5254, Springer, Berlin, Heidelberg, 2008, pp. 38–53.
[27] S. Das, P. Suganthan, Differential evolution: a survey of the state-of-the-art, IEEE Trans. Evol. Comput. 15 (1) (2011) 4–31.
[28] Y. Davidor, Epistasis variance: a viewpoint on ga-hardness, in: G. Rawlins (Ed.), Foundations of Genetic Algorithms, Morgan Kauffmannn, 1991, pp.

23–35.
[29] K. De Jong, Parameter setting in EAs: a 30 year perspective, in: F. Lobo, C. Lima, Z. Michalewicz (Eds.), Parameter Setting in Evolutionary Algorithms,

Stud. Comput. Intell., vol. 54, Springer, 2005, pp. 1–18.
[30] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: an autocatalytic optimizing process, Tech. Rep. 91-016, Politecnico di Milano, 1991.
[31] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Sixth International Symposium on Micro Machine and Human Science,

1995, pp. 39–43.
[32] B. Efron, R. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall, Inc., 1993.
[33] A. Eiben, R. Hinterding, Z. Michalewicz, Parameter control in evolutionary algorithms, IEEE Trans. Evol. Comput. 3 (2) (1999) 124–141.
[34] A. Eiben, Z. Michalewicz, M. Schoenauer, J. Smith, Parameter control in evolutionary algorithms, in: F. Lobo, C. Lima, Z. Michalewicz (Eds.), Parameter

Setting in Evolutionary Algorithms, Stud. Comput. Intell., vol. 54, Springer, 2005, pp. 19–46.
[35] A. Eiben, S. Smit, Parameter tuning for configuring and analyzing evolutionary algorithms, Swarm Evol. Comput. 1 (1) (2011) 19–31.
[36] A. Eremeev, C. Reeves, On confidence intervals for the number of local optima, in: Applications of Evolutionary Computing, Lect. Notes Comput. Sci.,

vol. 2611, Springer, 2003. 115-115.
[37] C. Fonlupt, D. Robilliard, P. Preux, A bit-wise epistasis measure for binary search spaces, in: Proceedings of Parallel Problem Solving from Nature (PPSN

V), Lect. Notes Comput. Sci., vol. 1498, 1998, pp. 47–56.
[38] O. Francois, C. Lavergne, Design of evolutionary algorithms – a statistical perspective, IEEE Trans. Evol. Comput. 5 (2) (2001) 129–148.
[39] M. Gagliolo, J. Schmidhuber, Learning dynamic algorithm portfolios, Ann. Math. Artif. Intel. 47 (2006) 295–328.
[40] J. Garnier, L. Kallel, Efficiency of local search with multiple local optima, SIAM J. Discrete Math. 15 (1) (2002) 122–141.
[41] C. Gomes, B. Selman, Algorithm portfolios, Artif. Intell. 126 (1–2) (2001) 43–62.
[42] C. Gomes, B. Selman, N. Crato, H. Kautz, Heavy-tailed phenomena in satisfiability and constraint satisfaction problems, J. Autom. Reason. 24 (1–2)

(2000) 67–100.
[43] N. Gould, D. Orban, P. Toint, CUTEst: a constrained and unconstrained testing environment with safe threads, Tech. Rep. RAL-TR-2013-005, Science

and Technology Facilities Council, 2013.
[44] M. Graff, H. Escalante, J. Cerda-Jacobo, A. Gonzalez, Models of performance of time series forecasters, Neurocomputing 122 (0) (2013) 375–385.

advances in cognitive and ubiquitous computing Selected papers from the Sixth International Conference on Innovative Mobile and Internet Services
in Ubiquitous Computing (IMIS-2012).

[45] M. Graff, R. Poli, Practical performance models of algorithms in evolutionary program induction and other domains, Artif. Intell. 174 (2010) 1254–
1276.

[46] M. Graff, R. Poli, J. Flores, Models of performance of evolutionary program induction algorithms based on indicators of problem difficulty, Evol.
Comput. 21 (4) (2013) 533–560.

[47] J. Grobler, A. Engelbrecht, G. Kendall, V. Yadavalli, Alternative hyper-heuristic strategies for multi-method global optimization, in: Proceedings of the
IEEE Congress on Evolutionary Computation (CEC2010), 2010, pp. 1–8.

[48] N. Hansen, A. Auger, S. Finck, R. Ros, Real-parameter black-box optimization benchmarking BBOB-2010: Experimental setup, Tech. Rep. RR-7215,
INRIA, September 2010.

[49] N. Hansen, A. Auger, R. Ros, S. Finck, P. Pošík, Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009, in:
Genetic and Evolutionary Computation Conference, 2011, pp. 1689–1696.

[50] N. Hansen, R. Ros, N. Mauny, M. Schoenauer, A. Auger, Impacts of invariance in search: when CMA-ES and PSO face ill-conditioned and non-separable
problems, Appl. Soft Comput. 11 (8) (2011) 5755–5769.

[51] E. Hart, J. Timmis, Application areas of ais: the past, the present and the future, Appl. Soft Comput. 8 (1) (2008) 191–201.
[52] M. Hauschild, M. Pelikan, An introduction and survey of estimation of distribution algorithms, Swarm Evol. Comput. 1 (3) (2011) 111–128.
[53] J. He, C. Reeves, C. Witt, X. Yao, A note on problem difficulty measures in black-box optimization: classification, realizations and predictability, Evol.

Comput. 15 (4) (2007) 435–443.
[54] R. Heckendorn, D. Whitley, Predicting epistasis from mathematical models, Evol. Comput. 7 (1) (1999) 69–101.
[55] D. Henderson, S. Jacobson, A. Johnson, The theory and practice of simulated annealing, in: F. Glover, G. Kochenberger (Eds.), Handbook of

Metaheuristics, International Series in Operations Research & Management Science, vol. 57, Springer, US, 2003, pp. 287–319.
[56] M. Hilario, A. Kalousis, P. Nguyen, A. Woznica, A data mining ontology for algorithm selection and meta-mining, in: Third Generation Data Mining:

Towards Service-Oriented Knowledge Discovery, 2009, pp. 76–87.
[57] H. Hoos, T. Stützle, Introduction, The Morgan Kaufmann Series in Artificial Intelligence, Morgan Kaufman, San Francisco, 2005 (Chapter 1).
[58] H. Hoos, T. Stützle, SLS Methods, The Morgan Kaufmann Series in Artificial Intelligence, Morgan Kaufmann, San Francisco, 2005 (Chapter 2).
[59] P. Hough, P. Williams, Modern machine learning for automatic optimization algorithm selection, in: Proceedings of the INFORMS Artificial

Intelligence and Data Mining Workshop, 2006, pp. 1–6.
[60] M. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, A. Zimek, Can shared-neighbor distances defeat the curse of dimensionality?, in: M. Gertz, B. Ludäscher

(Eds.), Scientific and Statistical Database Management, Lect. Notes Comput. Sci., vol. 6187, Springer, 2010, pp. 482–500.
[61] A. Howe, E. Dahlman, C. Hansen, M. Scheetz, A. Mayrhauser, Exploiting competitive planner performance, in: S. Biundo, M. Fox (Eds.), Recent

Advances in AI Planning, Lecture Notes in Computer Science, vol. 1809, Springer, Berlin, Heidelberg, 2000, pp. 62–72.

http://refhub.elsevier.com/S0020-0255(15)00368-0/h0060
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0065
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0065
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0065
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0065
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0065
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0065
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0065
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0070
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0070
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0070
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0070
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0075
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0085
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0085
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0085
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0085
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0085
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0085
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0090
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0095
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0095
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0100
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0100
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0100
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0105
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0105
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0110
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0110
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0115
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0120
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0120
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0125
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0130
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0130
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0130
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0135
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0140
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0140
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0140
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0140
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0145
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0145
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0145
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0145
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0145
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0145
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0160
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0160
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0165
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0170
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0170
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0170
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0170
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0170
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0170
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0175
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0180
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0180
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0180
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0190
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0195
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0200
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0205
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0210
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0210
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0220
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0220
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0220
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0225
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0225
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0230
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0230
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0250
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0250
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0255
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0260
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0265
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0265
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0270
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0275
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0275
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0275
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0275
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0275
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0285
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0285
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0290
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0290
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0300
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0300
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0300
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0300
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0300
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0305
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0305
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0305
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0305
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0305


M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245 243
[62] F. Hutter, Y. Hamadi, H. Hoos, K. Leyton-Brown, Performance prediction and automated tuning of randomized and parametric algorithms, in:
Proceedings of Principles and Practice of Constraint Programming – CP 2006, Lect. Notes Comput. Sci., vol. 4204, Springer, 2006, pp. 213–228.

[63] F. Hutter, H. Hoos, K. Leyton-Brown, Sequential model-based optimization for general algorithm configuration, in: C. Coello (Ed.), Learning and
Intelligent Optimization, Lecture Notes in Computer Science, vol. 6683, Springer, Berlin, Heidelberg, 2011, pp. 507–523.

[64] F. Hutter, H. Hoos, K. Leyton-Brown, T. Stützle, ParamILS: an automatic algorithm configuration framework, J. Artif. Intell. Res. 36 (2009) 267–306.
[65] F. Hutter, L. Xu, H. Hoos, K. Leyton-Brown, Algorithm runtime prediction: methods & evaluation, Artif. Intell. 206 (0) (2014) 79–111.
[66] T. Jansen, On classifications of fitness functions, Tech. Rep. CI-76/99, University of Dortmund, November 1999.
[67] T. Jansen, Analyzing Evolutionary Algorithms, Springer, Berlin, Heidelberg, 2013.
[68] T. Jones, S. Forrest, Fitness distance correlation as a measure of problem difficulty for genetic algorithms, in: Proceedings of the Sixth International

Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc., 1995, pp. 184–192.
[69] S. Kadioglu, Y. Malitsky, M. Sellmann, K. Tierney, Isac – instance-specific algorithm configuration, in: Proceedings of the 2010 Conference on ECAI

2010: 19th European Conference on Artificial Intelligence, IOS Press, Amsterdam, The Netherlands, 2010, pp. 751–756.
[70] J. Kanda, A. Carvalho, E. Hruschka, C. Soares, Selection of algorithms to solve traveling salesman problems using meta-learning, Int. J. Hybrid Intell.

Syst. 8 (3) (2011) 117–128.
[71] D. Karaboga, B. Akay, A survey: algorithms simulating bee swarm intelligence, Artif. Intell. Rev. 31 (1–4) (2009) 61–85.
[72] D. Karnopp, Random search techniques for optimization problems, Automatica 1 (1963) 111–121.
[73] L. Kotthoff, Algorithm selection for combinatorial search problems: a survey, AI Magazine 35 (3) (2014).
[74] K. Leyton-Brown, E. Nudelman, Y. Shoham, Learning the empirical hardness of optimization problems: the case of combinatorial auctions, in: P. Van

Hentenryck (Ed.), Principles and Practice of Constraint Programming – CP 2002, Lect. Notes Comput. Sci., vol. 2470, Springer, 2002, pp. 91–100.
[75] K. Leyton-Brown, E. Nudelman, Y. Shoham, Empirical hardness models: methodology and a case study on combinatorial auctions, J. ACM 56 (2009)

22:1–22:52.
[76] E. Leyva, Y. Caises, A. González, R. Pérez, On the use of meta-learning for instance selection: an architecture and an experimental study, Inform. Sci.

266 (0) (2014) 16–30.
[77] E. Leyva, A. González, R. Pérez, Knowledge-based instance selection: a compromise between efficiency and versatility, Knowl.-Based Syst. 47 (0)

(2013) 65–76.
[78] X. Li, A. Engelbrecht, M. Epitropakis, Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function

optimization, Tech. rep., RMIT University, 2013.
[79] X. Li, K. Tang, M. Omidvar, Z. Yang, K. Qin, H. China, Benchmark functions for the CEC’2013 special session and competition on large-scale global

optimization, Tech. rep., RMIT University, 2013.
[80] Y. Liu, X. Yao, Q. Zhao, T. Higuchi, Scaling up fast evolutionary programming with cooperative coevolution, Proceedings of the 2001 Congress on

Evolutionary Computation, vol. 2, Ieee, 2001, pp. 1101–1108.
[81] M. Lozano, D. Molina, F. Herrera, Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization

problems, Soft Comput. 15 (2011) 2085–2087.
[82] G. Lu, J. Li, Y. Yao, Fitness–probability cloud and a measure of problem hardness for evolutionary algorithms, in: Proceedings of the 11th European

Conference on Evolutionary Computation in Combinatorial Optimization, Lect. Notes Comput. Sci., Springer, 2011, pp. 108–117.
[83] M. Lunacek, D. Whitley, The dispersion metric and the CMA evolution strategy, in: Proceedings of the 8th Annual Conference on Genetic and

Evolutionary Computation, ACM, New York, NY, USA, 2006, pp. 477–484.
[84] R. Luus, T. Jaakola, Optimization by direct search and systematic reduction of the size of search region, AIChE J. 19 (4) (1973) 760–766.
[85] K. Malan, A. Engelbrecht, Quantifying ruggedness of continuous landscapes using entropy, in: Proceedings of the 2009 IEEE Congress on Evolutionary

Computation (CEC2009), 2009, pp. 1440–1447.
[86] K. Malan, A. Engelbrecht, A survey of techniques for characterising fitness landscapes and some possible ways forward, Inform. Sci. 241 (0) (2013)

148–163.
[87] Y. Malitsky, M. Sellmann, Instance-specific algorithm configuration as a method for non-model-based portfolio generation, in: N. Beldiceanu, N.

Jussien, r. Pinson (Eds.), Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation Problems, Lecture Notes in
Computer Science, vol. 7298, Springer, Berlin, Heidelberg, 2012, pp. 244–259.

[88] Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann, Non-model-based algorithm portfolios for SAT, in: K. Sakallah, L. Simon (Eds.), Theory and
Applications of Satisfiability Testing – SAT 2011, Lecture Notes in Computer Science, vol. 6695, Springer, Berlin, Heidelberg, 2011, pp. 369–370.

[89] Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann, Algorithm portfolios based on cost-sensitive hierarchical clustering, in: Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI’13, AAAI Press, 2013, pp. 608–614.

[90] J. Marin, How landscape ruggedness influences the performance of real-coded algorithms: a comparative study, Soft Comput. 16 (4) (2012) 683–698.
[91] O. Mersmann, B. Bischl, H. Trautmann, M. Preuß, C. Weihs, G. Rudolph, Exploratory landscape analysis, in: Proceedings of the 13th Annual Conference

on Genetic and Evolutionary Computation, GECCO ’11, ACM, New York, NY, USA, 2011, pp. 829–836.
[92] O. Mersmann, M. Preuß, H. Trautmann, Benchmarking evolutionary algorithms: towards exploratory landscape analysis, in: Proceedings of Parallel

Problem Solving from Nature (PPSN XI), Lect. Notes Comput. Sci., vol. 6238, Springer, 2010, pp. 73–82.
[93] P. Merz, Advanced fitness landscape analysis and the performance of memetic algorithms, Evol. Comput. 12 (3) (2004) 303–325.
[94] Z. Michalewicz, Quo vadis, evolutionary computation? on a growing gap between theory and practice, in: Advances in Computational Intelligence, No.

73 11 in Lect. Notes Comput. Sci., Springer, 2012, pp. 98–121.
[95] C. Müller, I. Sbalzarini, Global characterization of the CEC 2005 fitness landscapes using fitness–distance analysis, in: Applications of Evolutionary

Computation, Lect. Notes Comput. Sci., vol. 6624, Springer, 2011, pp. 294–303.
[96] M. Montes de Oca, T. Stutzle, M. Birattari, M. Dorigo, Frankenstein’s PSO: a composite particle swarm optimization algorithm, IEEE Trans. Evol.

Comput. 13 (5) (2009) 1120–1132.
[97] A. Moraglio, Towards a geometric unification of evolutionary algorithms, Ph.D. thesis, University of Essex, 2007.
[98] R. Morgan, M. Gallagher, Length scale for characterising continuous optimization problems, in: Proceedings of Parallel Problem Solving from Nature

(PPSN XII), Lect. Notes Comput. Sci., 2012, pp. 407–416.
[99] R. Morgan, M. Gallagher, Sampling techniques and distance metrics in high dimensional continuous landscape analysis: limitations and

improvements, IEEE Trans. Evol. Comput. PP (99) (2013). 1-1.
[100] M. Muñoz, M. Kirley, S. Halgamuge, The algorithm selection problem on the continuous optimization domain, in: Computational Intelligence in

Intelligent Data Analysis, Studies Comput. Intell., vol. 445, Springer, 2012, pp. 75–89.
[101] M. Muñoz, M. Kirley, S. Halgamuge, Landscape characterization of numerical optimization problems using biased scattered data, in: Proceedings of

the 2012 Congress on Evolutionary Computation (CEC2012), 2012, pp. 1–8.
[102] M. Muñoz, M. Kirley, S. Halgamuge, A meta-learning prediction model of algorithm performance for continuous optimization problems, in:

Proceedings of Parallel Problem Solving from Nature (PPSN XII), Lect. Notes Comput. Sci., vol. 7941, 2012, pp. 226–235.
[103] M. Muñoz, M. Kirley, S. Halgamuge, Exploratory landscape analysis of continuous space optimization problems using information content, IEEE Trans.

Evol. Comput. 19 (1) (2015) 74–87.
[104] B. Naudts, L. Kallel, A comparison of predictive measures of problem difficulty in evolutionary algorithms, IEEE Trans. Evol. Comput. 4 (1) (2000) 1–15.
[105] B. Naudts, D. Suys, A. Verschoren, Epistasis as a basic concept in formal landscape analysis, in: T. Bäck (Ed.), Proceedings of the 7th International

Conference on Genetic Algorithms, Morgan Kaufmann, 1997, pp. 65–72.
[106] F. Neumann, C. Witt, Bioinspired Computation in Combinatorial Optimization, Springer, Berlin, Heidelberg, 2010.

http://refhub.elsevier.com/S0020-0255(15)00368-0/h0310
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0310
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0310
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0315
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0315
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0315
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0315
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0320
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0325
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0335
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0335
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0340
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0340
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0340
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0345
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0345
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0345
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0350
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0350
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0355
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0360
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0860
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0370
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0370
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0370
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0370
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0375
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0375
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0380
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0380
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0385
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0385
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0400
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0400
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0400
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0405
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0405
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0410
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0410
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0410
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0415
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0415
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0415
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0420
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0430
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0430
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0435
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0435
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0435
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0435
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0435
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0435
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0435
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0440
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0440
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0440
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0440
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0440
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0445
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0445
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0445
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0450
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0455
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0455
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0455
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0460
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0460
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0460
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0465
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0470
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0470
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0470
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0475
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0475
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0475
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0480
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0480
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0495
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0495
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0500
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0500
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0500
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0515
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0515
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0520
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0525
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0525
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0525
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0525
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0530
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0530


244 M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245
[107] J. Nocedal, S. Wright, Conjugate gradient methods, in: Numerical Optimization, Springer Series in Operations Research and Financial Engineering,
Springer, New York, 2006, pp. 101–134 (Chapter 5).

[108] J. Nocedal, S. Wright, Fundamentals of unconstrained optimization, in: Numerical Optimization, Springer Series in Operations Research and Financial
Engineering, Springer, New York, 2006, pp. 10–29 (Chapter 2).

[109] J. Nocedal, S. Wright, Quasi-newton methods, in: Numerical Optimization, Springer Series in Operations Research and Financial Engineering, Springer,
New York, 2006, pp. 135–163 (Chapter 6).

[110] J. Nocedal, S. Wright, Trust-region methods, in: Numerical Optimization, Springer Series in Operations Research and Financial Engineering, Springer,
New York, 2006, pp. 66–100 (Chapter 4).

[111] P. Oliveto, X. Yao, Runtime analysis of evolutionary algorithms for discrete optimization, in: Theory of Randomized Search Heuristics, World
Scientific, 2011, pp. 21–52.

[112] G. Pappa, G. Ochoa, M.R. Hyde, A. Freitas, J. Woodward, J. Swan, Contrasting meta-learning and hyper-heuristic research: the role of evolutionary
algorithms, Genet. Program. Evolvable Mach. (2013) 1–33.

[113] K. Passino, Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Syst. Mag. 22 (3) (2002) 52–67.
[114] M. Pedersen, Tuning & simplifying heuristical optimization, Ph.D. thesis, University of Southampton, 2009.
[115] F. Peng, K. Tang, G. Chen, X. Yao, Population-based algorithm portfolios for numerical optimization, IEEE Trans. Evol. Comput. 14 (5) (2010) 782–800.
[116] A.P. Piotrowski, J.J. Napiorkowski, P.M. Rowinski, How novel is the ‘‘novel’’ black hole optimization approach?, Inform Sci. 267 (2014) 191–200.
[117] E. Pitze, M. Affenzeller, A. Beham, S. Wagner, Comprehensive and automatic fitness landscape analysis using heuristiclab, in: EUROCAST 2011, Lect.

Notes Comput. Sci., vol. 6927, 2012, pp. 424–431.
[118] E. Pitzer, M. Affenzeller, A comprehensive survey on fitness landscape analysis, in: Recent Advances in Intelligent Engineering Systems, Studies

Comput. Intell., vol. 378, Springer, Berlin, Heidelberg, 2012, pp. 161–191.
[119] R. Poli, L. Vanneschi, W. Langdon, N. McPhee, Theoretical results in genetic programming: the next ten years?, Genet Program. Evolvable Mach. 11

(2010) 285–320.
[120] M. Preuß, C. Stoean, R. Stoean, Niching foundations: basin identification on fixed-property generated landscapes, in: Proceedings of the 13th Annual

Conference on Genetic and Evolutionary Computation, GECCO ’11, ACM, New York, NY, USA, 2011, pp. 837–844.
[121] K. Price, Differential evolution vs. the functions of the 2nd ICEO, in: Proceedings of the IEEE International Conference on Evolutionary Computation,

1997, pp. 153–157.
[122] C. Reeves, Fitness landscapes, in: Search Methodologies, Springer, 2005, pp. 587–610.
[123] C. Reeves, A. Eremeev, Statistical analysis of local search landscapes, J. Oper. Res. Soc. 55 (7) (2004) 687–693.
[124] C. Reeves, C. Wright, An experimental design perspective on genetic algorithms, in: Foundations of Genetic Algorithms 3, Morgan Kaufmann, 1995,

pp. 7–22.
[125] J. Rice, The algorithm selection problem, Advances in Computers, vol. 15, Elsevier, 1976, pp. 65–118.
[126] J. Rice, Methodology for the algorithm selection problem, in: Proceedings of the IFIP TC 2.5 Working Conference on Performance Evaluation of

Numerical Software, 1979, pp. 301–307.
[127] S. Rochet, M. Slimane, G. Venturini, Epistasis for real encoding in genetic algorithms, in: Australian and New Zealand Conference on Intelligent

Information Systems, 1996, pp. 268–271.
[128] S. Rochet, G. Venturini, M. Slimane, E. El Kharoubi, A critical and empirical study of epistasis measures for predicting ga performances: a summary, in:

Third European Conference on Artificial Evolution, 1998, pp. 275–285.
[129] R. Ros, Real-parameter black-box optimisation: Benchmarking and designing algorithms, Ph.D. thesis, Universite Paris-Sud, December 2009.
[130] H. Rosé, W. Ebeling, T. Asselmeyer, The density of states – a measure of the difficulty of optimisation problems, in: Parallel Problem Solving from

Nature – PPSN IV, Lect. Notes Comput. Sci., vol. 1141, Springer, Berlin, Heidelberg, 1996, pp. 208–217.
[131] J. Schmee, G. Hahn, A simple method for regression analysis with censored data, Technometrics 21 (4) (1979) 417–432.
[132] D. Seo, B. Moon, An information-theoretic analysis on the interactions of variables in combinatorial optimization problems, Evol. Comput. 15 (2)

(2007) 169–198.
[133] D. Simon, R. Rarick, M. Ergezer, D. Du, Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms, Inform. Sci.

181 (7) (2011) 1224–1248.
[134] J. Smith, T. Fogarty, Operator and parameter adaptation in genetic algorithms, Soft Comput. 1 (2) (1997) 81–87.
[135] T. Smith, P. Husbands, P. Layzell, M. O’Shea, Fitness landscapes and evolvability, Evol. Comput. 10 (1) (2002) 1–34.
[136] K. Smith-Miles, Towards insightful algorithm selection for optimisation using meta-learning concepts, in: IEEE International Joint Conference on

Neural Networks, 2008 (IJCNN 2008), (IEEE World Congress on Computational Intelligence), 2008, pp. 4118–4124.
[137] K. Smith-Miles, Cross-disciplinary perspectives on meta-learning for algorithm selection, ACM Comput. Surv. 41 (1) (2009) 6:1–6:25.
[138] K. Smith-Miles, D. Baatar, B. Wreford, R. Lewis, Towards objective measures of algorithm performance across instance space, Comput. Oper. Res. 45

(0) (2014) 12–24.
[139] K. Smith-Miles, R. James, J. Giffin, Y. Tu, A knowledge discovery approach to understanding relationships between scheduling problem structure and

heuristic performance, in: Learning and Intelligent Optimization, Lect. Notes Comput. Sci., vol. 5851, Springer, 2009, pp. 89–103.
[140] K. Smith-Miles, J. van Hemert, Discovering the suitability of optimisation algorithms by learning from evolved instances, Ann. Math. Artif. Intel. 61

(2011) 87–104.
[141] K. Smith-Miles, B. Wreford, L. Lopes, N. Insani, Predicting metaheuristic performance on graph coloring problems using data mining, in: E.-G. Talbi

(Ed.), Hybrid Metaheuristics, Studies Comput. Intell., vol. 434, Springer, Berlin, Heidelberg, 2013, pp. 417–432.
[142] K. Sörensen, Metaheuristics—the metaphor exposed, Int. T. Oper. Res. 22 (1) (2015) 3–18.
[143] P. Stadler, Landscapes and their correlation functions, J. Math. Chem. 20 (1996) 1–45.
[144] K. Steer, A. Wirth, S. Halgamuge, Information theoretic classification of problems for metaheuristics, in: Proceedings of Simulated Evolution and

Learning 20 08, Lect. Notes Comput. Sci., vol. 5361, Springer, 2008, pp. 319–328.
[145] C. Stephens, R. Poli, EC theory – ‘‘in theory’’, in: A. Menon (Ed.), Frontiers of Evolutionary Computation, Genet. Evol. Comput. Ser., vol. 11, Springer,

2004, pp. 129–155 (Chapter 7).
[146] P. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the CEC 2005 special session on

real-parameter optimization, Tech. rep., NTU, Singapore and IIT, Kanpur, 2005. <http://www.bionik.tu-berlin.de/user/niko/Tech-Report-May-30-05.
pdf>.

[147] K. Tang, F. Peng, G. Chen, X. Yao, Population-based algorithm portfolios with automated constituent algorithms selection, Inform. Sci. 279 (2014) 94–
104.

[148] C. Thornton, F. Hutter, H. Hoos, K. Leyton-Brown, Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms, in:
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, 2013, pp. 847–
855.

[149] M. Tomassini, L. Vanneschi, P. Collard, M. Clergue, A study of fitness distance correlation as a difficulty measure in genetic programming, Evol.
Comput. 13 (2) (2005) 213–239.

[150] G. Uludag, A. Sima Uyar, Fitness landscape analysis of differential evolution algorithms, in: Fifth International Conference on Soft Computing,
Computing with Words and Perceptions in System Analysis, Decision and Control, ICSCCW 2009, 2009, pp. 1–4.

[151] L. Vanneschi, M. Clergue, P. Collard, M. Tomassini, S. Vérel, Fitness clouds and problem hardness in genetic programming, in: K. Deb (Ed.), Genetic and
Evolutionary Computation – GECCO 2004, Lect. Notes Comput. Sci., vol. 3103, Springer, 2004, pp. 690–701.

http://refhub.elsevier.com/S0020-0255(15)00368-0/h0535
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0535
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0535
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0540
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0540
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0540
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0545
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0545
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0545
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0550
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0550
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0550
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0555
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0555
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0555
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0560
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0560
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0565
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0575
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0580
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0590
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0590
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0590
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0595
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0595
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0600
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0600
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0600
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0610
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0610
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0615
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0620
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0620
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0620
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0625
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0625
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0650
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0650
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0650
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0655
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0660
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0660
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0665
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0665
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0670
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0675
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0685
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0690
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0690
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0695
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0695
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0695
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0700
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0700
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0705
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0705
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0705
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0705
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0865
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0715
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0720
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0720
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0720
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0725
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0725
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0725
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0725
http://www.bionik.tu-berlin.de/user/niko/Tech-Report-May-30-05.pdf
http://www.bionik.tu-berlin.de/user/niko/Tech-Report-May-30-05.pdf
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0735
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0735
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0740
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0740
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0740
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0740
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0745
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0745
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0755
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0755
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0755
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0755


M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245 245
[152] L. Vanneschi, M. Tomassini, P. Collard, M. Clergue, Fitness distance correlation in structural mutation genetic programming, in: C. Ryan, T. Soule, M.
Keijzer, E. Tsang, R. Poli, E. Costa (Eds.), Genetic Programming, Lect. Notes Comput. Sci., vol. 2610, Springer, 2003, pp. 455–464.

[153] V. Vassilev, T. Fogarty, J. Miller, Information characteristics and the structure of landscapes, Evol. Comput. 8 (1) (2000) 31–60.
[154] V. Vassilevska, R. Williams, S. Woo, Confronting hardness using a hybrid approach, in: Proceedings of the Seventeenth Annual ACM-SIAM Symposium

on Discrete Algorithm, ACM, New York, NY, USA, 2006, pp. 1–10.
[155] M. Črepinšek, S. Liu, L. Mernik, A note on teaching-learning-based optimization algorithm, Inform. Sci. 212 (0) (2012) 79–93.
[156] J. Vrugt, B. Robinson, J. Hyman, Self-adaptive multimethod search for global optimization in real-parameter spaces, IEEE Trans. Evol. Comput. 13 (2)

(2009) 243–259.
[157] G. Wang, Q. Song, H. Sun, X. Zhang, B. Xu, Y. Zhou, A feature subset selection algorithm automatic recommendation method, J. Artif. Intell. Res. 47

(2013) 1–34.
[158] J. Watson, J. Beck, A. Howe, L. Whitley, Problem difficulty for tabu search in job-shop scheduling, Artif. Intell. 143 (2) (2003) 189–217.
[159] J. Watson, A. Howe, Focusing on the individual: Why we need new empirical methods for characterizing problem difficulty, Working Notes of ECAI

2000 Workshop on Empirical Methods in Artificial Intelligence, August 2000.
[160] E. Weinberger, Correlated and uncorrelated fitness landscapes and how to tell the difference, Biol. Cybern. 63 (1990) 325–336.
[161] E. Weinberger, P. Stadler, Why some fitness landscapes are fractal, J. Theor. Biol. 163 (2) (1993) 255–275.
[162] T. Weise, M. Zapf, R. Chiong, A. Nebro, Why is optimization difficult?, in: R. Chiong (Ed.), Nature-Inspired Algorithms for Optimisation, Stud. Comput.

Intell., vol. 193, Springer, 2009, pp. 1–50.
[163] D. Weyland, A rigorous analysis of the harmony search algorithm: how the research community can be misled by a ‘‘novel’’ methodology, Int. J. Appl.

Metaheur. Comput. 1 (2) (2010) 50–60.
[164] D. Whitley, A genetic algorithm tutorial, Stat. Comput. 4 (2) (1994) 65–85.
[165] D. Wolpert, W. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput. 1 (1) (1997) 67–82.
[166] L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown, SATzilla: portfolio-based algorithm selection for SAT, J. Artif. Intell. Res. 32 (1) (2008) 565–606.
[167] L. Xu, F. Hutter, H. Hoos, K. Leyton-brown, Satzilla2009: an automatic algorithm portfolio for sat. solver description, in: 2009 SAT Competition, 2009.
[168] L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown, Hydra-MIP: automated algorithm configuration and selection for mixed integer programming, in:

Proceedings of the 18th RCRA Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion, 2011.
[169] L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown, Evaluating component solver contributions to portfolio-based algorithm selectors, in: A. Cimatti, R.

Sebastiani (Eds.), Theory and Applications of Satisfiability Testing, Lecture Notes in Computer Science, vol. 7317, Springer, Berlin, Heidelberg, 2012,
pp. 228–241.

[170] B. Zadrozny, Learning and evaluating classifiers under sample selection bias, in: Proceedings of the Twenty-first International Conference on Machine
Learning, ACM, New York, NY, USA, 2004, p. 114.

[171] M. Zakynthinaki, J. Stirling, C.C. Martínez, A.L.D. de Durana, M.S. Quintana, G.R. Romo, J.S. Molinuevo, Modeling the basin of attraction as a two-
dimensional manifold from experimental data: applications to balance in humans, Chaos 20 (1) (2010) 013119.

http://refhub.elsevier.com/S0020-0255(15)00368-0/h0760
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0760
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0760
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0760
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0760
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0760
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0760
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0760
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0760
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0765
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0770
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0770
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0770
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0775
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0780
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0780
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0785
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0785
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0790
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0800
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0805
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0810
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0810
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0810
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0810
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0815
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0815
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0820
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0825
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0830
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0845
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0845
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0845
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0845
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0845
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0845
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0850
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0850
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0850
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0855
http://refhub.elsevier.com/S0020-0255(15)00368-0/h0855

	Algorithm selection for black-box continuous optimization problems: A survey on methods and challenges
	1 Introduction
	2 The algorithm selection framework
	3 Problem space: continuous optimization and fitness landscapes
	3.1 Modality and smoothness
	3.2 Basins of attraction
	3.3 Benchmark functions

	4 Algorithm space: Search algorithms for continuous optimization
	5 Performance space: measures of algorithm performance
	6 Characteristics space: exploratory landscape analysis methods
	6.1 Type I: Global unstructured methods
	6.2 Type II: Local unstructured methods
	6.3 Type III: Global structured methods
	6.4 Type IV: Local structured methods
	6.5 Discussion

	7 The selection framework and related techniques for black-box continuous optimization problems
	8 Conclusions and further research avenues
	Acknowledgements
	References


