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Selecting the most appropriate algorithm to use when attempting to solve a black-box con-
tinuous optimization problem is a challenging task. Such problems typically lack algebraic
expressions, it is not possible to calculate derivative information, and the problem may
exhibit uncertainty or noise. In many cases, the input and output variables are analyzed
without considering the internal details of the problem. Algorithm selection requires
expert knowledge of search algorithm efficacy and skills in algorithm engineering and
statistics. Even with the necessary knowledge and skills, success is not guaranteed.

In this paper, we present a survey of methods for algorithm selection in the black-box
continuous optimization domain. We start the review by presenting Rice’s (1976) selection
framework. We describe each of the four component spaces – problem, algorithm, perfor-
mance and characteristic – in terms of requirements for black-box continuous optimization
problems. This is followed by an examination of exploratory landscape analysis methods
that can be used to effectively extract the problem characteristics. Subsequently, we pro-
pose a classification of the landscape analysis methods based on their order, neighborhood
structure and computational complexity. We then discuss applications of the algorithm
selection framework and the relationship between it and algorithm portfolios, hybrid
meta-heuristics, and hyper-heuristics. The paper concludes with the identification of key
challenges and proposes future research directions.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

The objective of an optimization problem is to improve a measure of performance or cost – the output variable – by
adjusting the values of the input variables. Typically, the optimization problem is represented as a function that maps the
inputs to the output, subject to constraints. When both the input and output variables are real numbers, the problem is
referred to as a continuous optimization problem. Such problems are common in science, engineering, finance, and other
fields [81].

Many continuous optimization problems lack algebraic expressions and may not even have a precise goal. Topologically,
the problem may present local and global optima or discontinuities where it is not possible to calculate derivative informa-
tion. The problems frequently incorporate dependencies between input variables, and large output fluctuations between
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adjacent input values – characteristics that are often unknown a priori. Furthermore, the problem may involve simulations or
experiments, which may be computational expensive or resource intensive. The input and output variables are often ana-
lyzed without considering the internal details of the problem. In other words, the problem is modeled as a black-box.

A search algorithm is typically used to solve a black-box continuous optimization problem (BCOP). Given the fact that the
number of algorithms introduced into the optimization community has increased over the past decades, it is extremely dif-
ficult for practitioners to be familiar with the specifics of all the algorithms [59]. Compounding the issue, is the diverse array
of models used by algorithms to generate candidate solutions. In this context, the model is a set of assumptions describing
the relationship between input and output variables. Nevertheless, the problem characteristics may break these assump-
tions, degrading the algorithm performance [50,159]. Unfortunately, we have a limited theoretical understanding of the
strengths and weaknesses of most algorithms [93,96,119,111,145]. Consequently, selecting the most efficient algorithm
for a given BCOP is non-trivial and is at best cumbersome [147]. Algorithm selection requires expert knowledge of search
algorithms, and skills in algorithm engineering and statistics [15]. Even then, failure is still an option.

A number of approaches, such as algorithm portfolios, hybrid meta-heuristics, hyper-heuristics, parameter tuning and
control methods, have been proposed to circumvent the algorithm selection challenge [4,8,13,18,35,41,63,64,115].
However, these approaches disregard the similarities between the current problem and previously observed problems
[23]. An alternative is to construct a map between the problem and algorithm spaces [125]. Due to the complexity of these
two spaces, the map can be constructed between measures of the problem characteristics and an algorithm performance
measure [125], using a machine learning model [137]. This approach has been successful in a number of problem domains
[2,9,39,44–46,61,62,65,69,70,73–77,87–89,136–139,141,148,157,166–169] including BCOPs [1,14,102], where Exploratory
Landscape Analysis (ELA) [91] methods are used to measure the problem characteristics.

In this paper, we present a survey of methods for algorithm selection for BCOPs. The paper is organized as follows: In
Section 2, we describe the algorithm selection framework proposed by Rice in [125], which lays down the conceptual foun-
dations for the problem–algorithm map. Each of the four component spaces – problem, algorithm, performance and charac-
teristic – are described in terms of requirements for black-box continuous optimization problems in subsequent sections. In
Section 3, we formally define a BCOP and problem characteristics, employing the fitness landscape concept. In Section 4, we
briefly discuss different classes of search algorithms. As such, this section illustrates the diversity of algorithms available to
practitioners. In Section 5, we introduce the methods used to measure algorithm performance. In Section 6, we present a
classification and a summary of well known ELA methods for the analysis of continuous fitness landscapes. We then present
implementations of the algorithm selection framework for BCOPs, and describe related approaches in Section 7. Finally, in
Section 8 we propose future research directions.
2. The algorithm selection framework

The algorithm selection problem (ASP) is defined as follows1: Let F be a problem space or domain, such as continuous opti-
mization. Let A be the algorithm space, which is a set of algorithms that can be applied to the problems in F . For a given prob-
lem f 2 F , the objective is to find an algorithm ao 2 A that minimizes q f ;að Þ, which is a measure of the cost of using an
algorithm a 2 A to solve f. Perhaps Rice was the first to describe the ASP in his 1976 paper [125]. He introduced the framework
illustrated in Fig. 1 to solve the ASP [137].

The framework has four components. The first one, F , cannot be properly defined without using complex mathematical
notation [126]. Although F has infinite cardinality, it excludes unsolvable problems such as a random function. Furthermore,
F is high dimensional due to the large number of problem characteristics [125]. The second component of the framework is
A, which potentially has an infinite cardinality. However, it is impractical to consider all reported algorithms [125]. Instead,
A contains the smallest set of algorithms, such that each one of them solves a large subset of problems in F with the best
possible performance [6]. These algorithms should be complementary – they solve different types of problems – and robust –
their accuracy and precision is scientifically demonstrable. The third component of the framework is the performance space,
P � R. It is the set of feasible values of q f ;að Þ. The performance measure represents the accuracy, speed, or other algorithmic
requirements.

The ASP is ill-defined due to the complexity and size of F and A. Therefore, formal solutions to the ASP may not exist. To
simplify the problem, Rice introduced the features or characteristics space, C � Rm, as the fourth component of his
framework. Characteristics are domain dependent, and provide order to F by imposing a low dimensional space
[126,154]. Furthermore, characteristics must be measurable, expose the complexities of f, and provide knowledge about
the strengths and weaknesses of a [137]. Hence, selecting the characteristics is a key step in the application of the framework
[125].

The framework is conceptually rich, although it lacks a clear implementation path for the selection mapping S : C ! A.
Consequently, the framework lacked extensive application until machine learning models – in this context known as
meta-models – became a suitable implementation approach [137]. We will further discuss the meta-models and their
implementation in Section 7.
1 We have modified Rice’s notation to use f as function. In the original paper, x is a problem, f xð Þ is a feature, A is an algorithm, p A; xð Þ is a performance
measure, P is the problem space, and F is the feature/characteristics space.



Fig. 1. Diagram of the algorithm selection framework proposed by Rice in his 1976 paper [125,137]. The framework has four components: the problem,
algorithm, performance and characteristic spaces.
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3. Problem space: continuous optimization and fitness landscapes

The first component of the algorithm selection framework is the problem space, F , defined in Section 2 as the set of all the
possible problems in the domain. The goal in a continuous optimization problem is to minimize or maximize the function
f : X # Y where X � RD is a bounded and compact space known as the input space, Y � R is known as the output space,
and D 2 Nþ is the dimensionality of the function. From now on we shall use problem and function interchangeably and
assume minimization without loss of generality.

Let x 2 X be a candidate solution with a cost or fitness of y 2 Y such that y ¼ f xð Þ. We call the subset of candidates the
input sample, X, and their cost values the output sample, Y. A BCOP is a problem such that it cannot be described with simple
mathematical expressions, lacks of useful or computable first and second derivatives, or has information that is not explicit
in the problem description, such as randomness or uncertainty. For these problems, the inputs and the outputs of the func-
tion are analyzed without considering the function’s internal workings. Therefore, a solution can only be found by sampling
the input space.

An optimal solution, xo 2 X ; yo ¼ f xoð Þ, is defined as the candidate for which all the elements in X have higher cost, i.e.,
xo : 8x 2 X ; y P yof g. In practice, it is neither fundamental nor feasible to find xo. Hence, we define a target solution,

xt ; yt ¼ f xtð Þ, as the candidate for which the difference in cost with xo is less or equal than an acceptable value, et , i.e.,
xt : xt 2 X ; yt � yo 6 etf g. Alternatively, xt can be defined as the candidate that offers the maximum improvement over a pre-

viously known cost if yo is unknown.
The only restriction on the sampling procedure used to find xt is that it generates candidates inside of X. Although a ran-

dom or a grid search are valid sampling procedures, neither of them are likely to find xt in finite time. A better way to look for
xt is to use a search algorithm, which is a systematic procedure that takes previous candidates and their costs as inputs, and
generates new and hopefully better candidates as outputs. For this purpose, the search algorithm maintains a simplified
model of the relationship between candidates and costs. The model assumes that the problem has an exploitable structure;
hence, the algorithm can infer details about the structure of the problem by collecting information during the run. This struc-
ture is known as the fitness landscape [122].

To understand the concept behind fitness landscapes, consider a function with D ¼ 2. The fitness landscape can be
thought of as a surface in a three dimensional space2 composed of ridges, valleys, plateaus and basins as illustrated on
Fig. 2. The local and global optima are located at the lowest points of this surface [153]. In this context, the goal of the search
algorithm is to find a target solution, storing information about the structure of the surface as it progresses to update its model.
The way in which the model infers the fitness landscape has a direct impact on its performance.
2 Two dimensions correspond to X and one more corresponds to Y.



(a) Surface view (b) Contour view

Fig. 2. Fitness landscape of a function with D ¼ 2. (a) Illustrates the landscape as a three dimensional surface composed of ridges, valleys, plateaus and
basins. The local and global optima are located at the lowest points of this surface. (b) Shows a contour view of the landscape and the location of a candidate
solution, x 2 X and an input sample, X � X . The color bars indicate the value of the cost. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Formally, a fitness landscape L for a function f is the tuple L ¼ X ; f ; dð Þ, where d is a distance metric that quantifies the
similarity between candidates. In continuous optimization, d is often the Euclidean distance. Similar candidates are those
whose distance between them is less than a threshold [118]. These candidates form a neighborhood, N r xð Þ � X , defined
as follows:
xi 2 N r xð Þ () d x;xið Þ 6 r ð1Þ
where r is the radius of a hypersphere centered on xi. Empirical studies suggest that the volume of N r and the search algo-
rithm performance are correlated [36]. Furthermore, as D increases so does the size of X and the volume of N r , resulting in
loss of algorithm performance [80], an effect known as the curse of dimensionality [60].

Using the definitions of fitness landscape and neighborhood presented above, we provide formal definitions for local and
global optima. A local optimum in a landscape L is a candidate xl 2 X such that y > yl for all x 2 N r xlð Þ. The set of local
optima can be denoted as X l � X . A global optimum in a landscape L is a candidate xo 2 X l such that yl 6 yo for all
xl 2 X l. The set of global optima can be denoted as Xo #X l. These definitions will come in handy when we describe the dif-
ferent characteristics of a function.
3.1. Modality and smoothness

Some characteristics of the fitness landscape can be described using the cardinality of both X l and Xo. An unimodal land-
scape (Fig. 3a) is defined as the landscape with Xoj j ¼ X lj j ¼ 1. A multimodal landscape (Fig. 3b) is defined as the landscape
with X lj j > 1. Although a multimodal landscape is thought to be more difficult to search than an unimodal landscape, this
intuition is sometimes unfounded [92,162].

A closely related concept to multimodality is smoothness, which refers to the magnitude of change in fitness within a
neighborhood. A landscape can be informally classified as rugged, smooth or neutral. Rugged landscapes (Fig. 3c) have large
fluctuations between neighbors, presenting several local optima and steep ascents and descents. Neutral landscapes (Fig. 3d)
have large flat areas or plateaus, where changes in the input fail to generate significant changes in the output. Due to the
characteristics of both rugged and neutral landscapes, both gradient and correlation data provide scarce information.
Thus, it is difficult to assert whether a particular area of the landscape is worth exploring [162].

The pattern of the set of the local optima, X l, constitutes the global structure of the landscape, which can be used to guide
the search for xt . If this pattern is smooth (Fig. 3e), it provides potentially exploitable information for an algorithm. If this
pattern is rugged or inexistent, finding an optimum can be challenging, perhaps impossible [92]. It is also possible to find
problems that exhibit deceptiveness, i.e., the global structure and gradient information lead the algorithm away from the
optima (Fig. 3f), rendering the optimization algorithm less efficient than a random search or exhaustive enumeration
[162]. In addition, it is possible that the fitness landscape possesses opposite properties at different locations, e.g., highly
rugged in some regions, while neutral in others. These landscapes are said to be globally heterogeneous [92].
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Fig. 3. Plots of six typical function in one dimension, where each plot depicts a specific landscape characteristic.
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3.2. Basins of attraction

In dynamical systems, any system that evolves towards a steady state is said to be drawn to an attractor [171]. This idea
can be used in the context of continuous optimization, if we consider a local optimum to be a steady state. For this purpose,
define a local search as a function l : X ! X l, and the basin of attraction of a local optimum, xl, as the subset of X in which
the local search converges towards xl, i.e., B xlð Þ ¼ x : l xð Þ ¼ xlf g, where x is the initial candidate and l xð Þ is the local opti-
mum found.

The shape and distribution of the basins of attraction are key characteristics of the fitness landscape. Ideally, a problem
has isotropic or spherical basins (Fig. 4a). However, real-world problems may present anisotropic or non-spherical basins
(Fig. 4b). Usually, anisotropic basins are the result of non-uniform variable scaling. This means that the change in cost result-
ing from modifying one of the variables is marginal compared to the change resulting from modifying any of the other vari-
ables. A successful search in such landscapes requires small steps in one variable and large steps in others. Anisotropic basins
might be non-elliptical. Therefore, the problem cannot be broken down into easier problems of lower dimensionality [92].
Such non-separable problems may be significantly difficult for certain algorithms [50], and increase the computational cost
[80].

Both the shape and the size of basins of attraction are important. In a landscape with homogeneous basins, there is pos-
itive correlation between the value of a local optimum and the size of its basin, i.e., better local optima have bigger basins,
which is a desirable characteristic [92]. Furthermore, if the basins have the same size, the landscape has a deterministic con-
figuration (Fig. 4c); otherwise the landscape has a random configuration (Fig. 4d) [40].

3.3. Benchmark functions

The concepts of basins of attraction, neighborhood and fitness landscape are useful to describe the characteristics of a
given optimization problem. A qualitative description – using labels such as rugged or unimodal – of a function can be made
when its structure and characteristics are known. For example, Mersmann et al. describe in [92] the characteristics of 24
problems from the COmparison Continuous Optimizer (COCO) noiseless set [48].



Fig. 4. Contour plots of four typical function in two dimensions, where each plot depicts a specific landscape characteristic. Each dark dashed line
represents a fitness levelset. The red lines in (a) and (b) represent the gradient direction, rf . The red lines in (c) and (d) represent the size of the basin of
attraction, B x1ð Þ. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Benchmark functions, such as those in the COCO set, are employed to evaluate algorithm performance. Since their struc-
ture is known, empirical observations can be made regarding the characteristics that make a problem difficult for the algo-
rithm under evaluation. The noiseless set in COCO is composed of 24 scalable functions, divided into five groups: separable,
low or moderately conditioned, highly conditioned and unimodal, multimodal with adequate global structure, and multi-
modal with weak global structure. The noisy set is composed of eight basis functions, with different types and levels of noise
[48]. Due to its use at the annual BBOB workshops series at the Genetic and Evolutionary Computation Conference, it has
been widely used for comparing algorithms.3 Similar workshops are carried out every year at the Congress on Evolutionary
Computation. In 2005, the focus was on low dimensionality (D � 50) problems [146]. The benchmark set is composed of 25 test
functions divided in four groups: unimodal, basic multimodal, expanded multimodal, and hybrid composition. In 2013, the
focus was on high dimensionality (D P 1000) [79] or multimodality [78] problems. The high dimensional set is composed of
15 functions divided into four groups: fully separable, partially additively separable, overlapping, and fully non-separable.
The multimodal set was composed of 20 functions.

In addition to evaluating algorithm performance, these benchmark sets are useful to build meta-models – as mentioned
in Section 2. Furthermore, characteristics such as modality and smoothness are unknown for most real world problems.
Since the only information available for BCOPs are the input and output samples, ELA measures are the only approach to
acquire appropriate knowledge about the problem characteristics. Therefore, these benchmark sets are also useful to eval-
uate new ELA methods. We will discuss the ELA measures in detail in Section 6.
4. Algorithm space: Search algorithms for continuous optimization

The second component of the algorithm selection framework is the algorithm space, A. It was defined in Section 2 as the
smallest set of complementary and robust algorithms that solves all the problems in F with better than average perfor-
mance. Complementary algorithms solve different types of problems. Robust algorithms have scientifically demonstrable
accuracy and precision. All algorithms are iterative processes, i.e., they search for xt by generating and improving candidate
solutions. This is achieved by keeping a model of the problem, i.e., a set of assumptions about the relationship between input
3 The raw data from these tests are available at http://coco.gforge.inria.fr/doku.php.

http://coco.gforge.inria.fr/doku.php
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and output variables. The model defines how the algorithm gathers, processes and stores information at each iteration.
Ideally, xt is found in finite time. However, an algorithm may converge prematurely when it generates candidates in a small
area of X , none of which is xt . Premature convergence is a direct consequence of the model [62].

The hundreds, perhaps thousands, of algorithms reported in the literature can be broadly classified as deterministic or
stochastic [21,129], depending on the model. Deterministic algorithms are based on rigorous formulations without random
variables. Therefore, their results are unequivocal and replicable for the same initial conditions. Their model relies on linear
algebra or computational geometry techniques. Most require the computation of a numerically stable estimator of the
Gradient or the Hessian, i.e., the first or second derivatives, of the function. Deterministic algorithms quickly converge
towards a local optimum [21]. It is common to re-start the algorithm at different, often random, locations to improve the
convergence towards a global optimum [129]. Deterministic algorithms can be broadly classified into three groups: line,
trust region and pattern search methods. On the other hand, stochastic algorithms rely on heuristics, statistical models
and random variables to find a global optimum. Although advances have been made on their theoretical underpinnings
[5], stochastic algorithms are less rigorously designed. However, they allow a more thorough exploration of X . Compared
with deterministic algorithms, they converge slowly towards the global optimum [22]. Stochastic algorithms can be broadly
classified into random search methods, simulated annealing, and population based algorithms. Table 1 summarizes the main
characteristics of each algorithm class.
Table 1
Main characteristics of the major algorithm families for black-box continuous optimization.

Deterministic algorithms
Family: Line search methods
Description: These methods generate new candidates, xiþ1, by searching along a direction Dx, i.e., xiþ1 ¼ xi þ Dx [21,129]. The simplest line search

method is gradient descent, which uses the first derivative at the current candidate, xi , as direction, i.e., Dx ¼ �.rf xið Þ, where . is the
step length. To improve convergence, the conjugate gradient method uses the current and previous candidates’ gradients to calculate

the direction [107]. In contrast, the Newton method uses the second derivative, i.e., Dx ¼ �. r2f xið Þ
h i�1

rf xið Þ, where r2f xið Þ is the

Hessian matrix. It is possible that r2f xið Þ is expensive to calculate exactly, but an approximation is sufficient to generate a direction.
These methods are known as Quasi-Newton. The most common are Broyden-Fletcher-Goldfarb-Shanno (BFGS), Davidon-Fletcher-
Powell (DFP), and Symmetric Rank 1 (SR1) [109]

Family: Trust region methods
Description: These methods assume that the function in the neighborhood of xi can be approximated by a linear or quadratic function, g xið Þ, whose

optimum correspond to xiþ1, i.e., rg xiþ1ð Þj j ¼ 0. The ratio between the real change in fitness, f xiþ1ð Þ � f xið Þ, over the estimated change
in fitness, g xiþ1ð Þ � g xið Þ, is compared against a threshold. If the ratio exceeds the threshold, xiþ1 is accepted as the new solution and
the neighborhood radius is decreased [110]. Otherwise, xiþ1 is rejected and the neighborhood radius is increased [21,129]. Perhaps the
earliest method of this type is the Levenberg–Marquardt algorithm [24]. Trust region methods are thought to be dual to line search
methods. On the former, the step size is selected first – the trust region – followed by the direction. On the later, the direction is
selected first followed by the step size [108]

Family: Pattern search methods
Description: These methods use a set of candidates around xi to direct the search [129]. The simplest of these methods is the coordinate search

algorithm. On each iteration, all the components of xi are fixed except for one, which is updated until a fitter value is found. This process
is carried out for all components in subsequent iterations. A more efficient method is the Nelder-Mead algorithm [21], which uses a
simplex, i.e., the D dimensional analog of a triangle with Dþ 1 vertices. The simplex is updated at each iteration by reflecting the vertex
with the lowest fitness, xiþ1. If the vertex continues to be less fit, the simplex is contracted by reducing the distance between xiþ1 and
xi . When the vertex improves, the simplex is expanded by increasing the distance between xiþ1 and xi . If one of the vertices does not
change over few iterations, its distance with xi is decreased [21]

Stochastic algorithms
Family: Random search methods
Description: These methods sample X using a fixed or adaptive probability distribution, usually normal or uniform [72,84]. Random search methods

converge with probability one to the global optimum when the sample size converges to infinity [129], and are computationally more
efficient than grid search [11]. An example of this type of methods is uninformed random picking [57]

Family: Simulated annealing methods
Description: These methods mimic the process in which a crystalline solid is heated and then allowed to slowly cool until it achieves its most

regular possible crystal lattice configuration [55,22]. Simulated annealing methods always select candidates with improved fitness.
However, they also allow the selection candidates with non-improving fitness; hence, providing means to escape local optima. The
probability of selecting non-improving candidates depends on the temperature parameter, which decreases at each iteration of the
algorithm [55]

Family: Population based algorithms
Description: These methods manipulate a group or ‘‘population’’ of candidate solutions simultaneously [58]. They are often inspired by a biological

phenomenon; hence, they are often called bio-inspired computing. These methods can be broadly classified into evolutionary and
swarm intelligence algorithms. Evolutionary algorithms use natural selection as a model of the optimization process. These algorithms
modify the population at each iteration, first by selecting the fittest members, and then exchanging information between two or more
candidates or by randomly modifying one or more candidates. Some popular methods are Genetic Algorithms [164], Evolutionary
Strategies [12], Estimation of Distribution Algorithms [52], and Differential Evolution [27]. On the other hand, swarm intelligence
algorithms emulate the collective behavior of self-organized and decentralized systems, e.g., ant colonies and fish schools. Some
popular methods are Ant Colony Optimization [30], Particle Swarm Optimization [31], Artificial Bee Colony [71], Bacteria Foraging
Algorithm [113], and Artificial Immune Systems [51]
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The large algorithmic diversity also hides some unpleasant surprises, particularly in the stochastic algorithmic families. In
recent years, a stream of papers were published presenting novel methods inspired by some natural phenomenon.
Invariably, these papers demonstrate the superiority of the new method. Hence, they are followed with numerous follow
up papers showing the application of the new method to different sets of problems, always with exceptionally good results
[142]. However, it has been shown that several methods recycle well known ideas and their performance is overestimated
[25,116,155,163]. Teasing out the novelty of such methods is an arduous task, which should be carried out by the algorithm
authors [133]. However, it is often the case that their main area of research is not optimization but a specific application
[142]. It seems that metaphors have shifted from inspiration to justification for new algorithms [142], but instead of advanc-
ing the state-of-the-art, it obfuscates more important innovations in the field.

To sum up, the algorithm space’s diversity complicates the selection problem. Furthermore, the relationship between the
problem characteristics and the algorithm model is vague. Hence, practitioners often select, modify, hybridize, and even pro-
pose algorithms hoping to achieve an acceptable performance level. Such an approach assumes that any algorithm perform
efficiently on any relevant problem. However, this is not a valid assumption, as there is a theoretical set of algorithms, such
that each one of them solves a large subset of problems in F with the best possible performance [6].

5. Performance space: measures of algorithm performance

The third component of the algorithm selection framework is the performance space, P � R, which is the set of feasible
values of a measure of an algorithm’s robustness – how often is a quality solution found – or its efficiency – how many
resources are needed to find a quality solution [7]. A performance measure, q f ;að Þ, should be simple, quantitative,
well-defined, interpretable, reproducible, fair, and relevant to practice [7,48].

Fig. 5a illustrates both robustness and efficiency measurements, where the vertical lines represent fixed computational
resources (the number of function evaluations) and the horizontal lines represent fixed solution qualities (fitness values).
Robustness measures use fixed resources [7]. Hence, they are compatible with real world applications where resources
are limited [48]. However, robustness measures may be hard to interpret as finding a m-times fitter solution is linked to
the possible unknown problem difficulty [48]. On the other hand, efficiency measures use fixed solution qualities [7].
Hence, they are preferable for comparing algorithms. It is evident that an algorithm is superior if it reaches a target solution
m-times faster than any other [48].

There are several performance measures reported in the literature [7]. However, the expected running time, t̂, is the mea-
sure of choice for most benchmark comparisons [48,146]. An efficiency measure, t̂ estimates the average number of function
evaluations required by an algorithm to reach the target solution, yt , for the first time [121]. It is calculated over a number of
algorithm runs as follows:
Fig. 5.
evaluat
solution
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numbe
evaluat
t̂ðf ;a; ytÞ ¼
#FEs ybest P ytð Þ

#succ
ð2Þ
Measurements of algorithm performance. (a) Presents a plot of the solution quality, measured as the current fitness, against the number of function
ions for three algorithms in the same problem. The vertical lines indicate the limits on computational resources. The horizontal lines represent

quality targets. At the cutoffs defined by these lines, the Algorithm 3 is the best performing while Algorithm 1 is the worst performing. (b) Shows
formance of the same three algorithms now over a set of problems. The performance is measured as the percentage of solved problems for a given
r of log-normalized function evaluations, log10 t̂=D

� �
. A problem is solved if the algorithm reaches a solution quality target. The normalized number of

ions is on the horizontal axis, whereas the percentage of solved problems is on the vertical axis.
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where #FEs ybest P ytð Þ is the number of function evaluations across all runs where the best fitness, ybest, is larger than the
target, and #succ is the number of successful runs. With censored runs, t̂ depends on the termination criteria. Additionally, t̂
can measure performance across a set of problems. For example, Fig. 5b illustrates the probability of solving a problem for a
given normalized budget, measured as log10 t̂=D. The probability plateaus when the problems cannot be solved. This repre-
sentation identifies whether an algorithm is more efficient than another on average, and how likely it is that the algorithm
will find a solution. In the figure, none of the algorithms solve all the problems. Algorithm 1 is the fastest of the three, but it
solves over 70% of the problems. Algorithm 2 is computationally more expensive, however, it solves nearly 90% of the prob-
lems. The worst performing is Algorithm 3, as it is the most computationally expensive, and solves slightly above 50% of the
problems.

The expected running time has two limitations: First, it requires a target, which may be unknown on a real world prob-
lem. However, yt can be defined as the minimum acceptable improvement over the best known candidate. Second, it requires
a sufficiently large number of algorithm runs to guarantee statistically significant results, which can be extremely time con-
suming depending on the problem [48]. The later limitation can be mitigated through bootstrapping [32].

Whichever measure is employed, performance is a random variable. It changes across problems, instances, even runs [47].
Furthermore, its probability distribution exhibits heavy-tailed behavior, which is ameliorated by restarting the algorithm
from random positions [42]. By controlling this behavior, performance can be modeled as a parametric distribution that
is totally described by few statistics, such as its mean and variance [62]. However, the performance distribution does not
provide insights on its dependency with the problem characteristics.
6. Characteristics space: exploratory landscape analysis methods

The fourth component of the algorithm selection framework is the characteristics space, C � Rm, defined by the set of
measures that provide information about the complexities of the problems, or the advantages and disadvantages of the algo-
rithms. As mentioned in Section 3.2, data driven methods, know as ELA methods, are the only valid approach to measure the
problem characteristics for BCOPs. ELA is an umbrella term for analytical, approximated and non-predictive methods
[53,66,86,91,104] originally developed for combinatorial optimization problems [137]. For BCOPs, the existing methods
are adaptations from their combinatorial counterparts [19,20,85,95,101,103,144,150], or purposely built for continuous
spaces [19,83,91,98,120].

The number of reported ELA methods is meager compared with the number of reported search algorithms [86,95,118],
due to the lack of clarity on the effects that the characteristics have on performance. Furthermore, the computational cost
of using an ELA method may be greater than running a search algorithm [9,53,137]. Therefore, the focus should be on meth-
ods that are easily defined and computed, based on established statistical methods [9,59,126]. Besides, it is useful to classify
these methods into types according to their focus as global or local [117], or as their sampling approach as unstructured or
structured.

Global methods process the complete sample to generate the final measure, providing an overview of the landscape struc-
ture while concealing information about the change of fitness between neighboring candidates [117]. Local methods split the
sample into groups of neighboring candidates. Each group is independently processed to produce a partial measure, which
goes through further processing to obtain a final result. Therefore, local methods evaluate the changes of fitness within
neighborhoods [117]. For example, Fig. 6 illustrates a multimodal function and a sample of eight candidates. Each candidate
has a neighborhood of size two or three, e.g., the neighborhood of x2 is x1;x2;x3f g. A global method might be the average

fitness of the eight candidates, i.e., c ¼ 1
8

P8
i¼1f xið Þ. On the other hand, a local method might be the sum over all neighbor-

hoods, of the average fitness over each neighborhood, i.e., c ¼ 1
2

P2
i¼1f xið Þ þ 1

3

P3
i¼1f xið Þ þ � � � þ 1

2

P8
i¼7f xið Þ.

Unstructured methods use a sample where each candidate can be considered an independent random variable.
Structured methods use a sample where each candidate may be dependent on one or more previous candidates. For example,
uniform sampling generates independent samples, while a random walk generates dependent samples. Furthermore, a
dependent sample may also be biased, i.e., there may be areas of X more densely sampled than others. This implies that
the samples used by either class are incompatible: the sample used by an unstructured method may not be suitable for a
structured one and vice versa. Also, the sample used by a structured method may not be suitable for another structured
Fig. 6. A multimodal function and a sample x1; . . . ;x8f g of eight candidates. Each candidate has a neighborhood of size two or three.
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method. This difference is fundamental, as unstructured methods allow us to calculate different measures, regardless if they
are global or local.

Using these concepts, we classify the ELA methods in four types, as illustrated in Fig. 7:

Type I methods are global and unstructured; hence, they can be applied to a representative sample of the input space.
Type I methods are simple and scalable with D; however, they do not measure the probability of improving the
fitness by sampling within a neighborhood.

Type II methods are local and unstructured; hence, they can be applied to a representative sample. To define the neigh-
borhood, it is necessary to provide a radius, r, which depends on the problem and the sample distribution.
Therefore, selecting r is difficult. Additionally, calculating each neighborhood becomes intractable as the sample
size increases.

Type III methods are global and structured. Since the sample can be biased, it might not be possible to reuse it in other
methods. Hence, the computational cost increases with the number of methods employed. A preprocessing
method may remove the bias at an additional computational cost [101].

[Type IV methods are local and structured; hence, they posses the limitations of Types II and III.

Although a different classification criteria could be followed (for example the use of distance metrics), this classification
emphasizes the advantages of one type over the others. Arguably, combinations of Type I and II methods are preferable as the
computational cost is reduced by sampling once, which is advantageous with expensive sampling, e.g., when the problem
involves a real time process. Even if sampling is cheap, the computational cost of Type II, III or IV methods is not justifiable,
as it may be faster to run several algorithms in parallel. Table 2 summarizes the methods discussed in the following sections,
classified into types.

6.1. Type I: Global unstructured methods

A first set of type I methods assume that smooth landscapes have neighboring candidates with similar fitness; therefore,
these measures are indicators of the landscape modality and the global structure strength. Fitness distance correlation, FDC,
and Dispersion, DISP100e%, measure the relationship between the candidate’s location and its fitness [68,83]. FDC is calculated
using the Pearson correlation between d, which is the Euclidean distance to the fittest candidate from the sample X of size n
[95], and y. On the other hand, DISP100e% is the average distance between the � ¼ enb e lowest cost candidates from X, where
e 2 0;1½ �. DISP100e% is normalized over the diagonal of X . DISP100e% has the highest discrimination power when e! 0 and
D < 10 [99]. Both FDC and DISP100e% are invariant to translational shifts and orthogonal rotations on X , which are global
isometries of the Euclidean space and do not affect d. FDC has been applied in other domains besides BCOPs
[10,95,149,150,152], and DISP100e% demonstrated why the CMA-ES algorithm is ineffective in multi-funnel, multimodal prob-
lems [83].
Fig. 7. Classification of the ELA methods into four types depending on the concepts of order and neighborhood. The arrow indicates the direction that the
computational effort increments, and how this increment depends on the type.



Table 2
Summary of the ELA measures employed in this paper.

Type Method Measure Description

I Fitness distance correlation FDC Fitness distance correlation
Dispersion DISP100e% Dispersion of level e
Probability density function c Yð Þ Skewness

j Yð Þ Kurtosis
H Yð Þ Entropy

Surrogate modeling R2
L

Adjusted coefficient of determination of a linear regression model

R2
LI

Adjusted coefficient of determination of a linear regression model plus interactions

R2
Q

Adjusted coefficient of determination of a purely quadratic regression model

R2
QI

Adjusted coefficient of determination of a quadratic regression model plus interactions

min bLð Þ Minimum of the absolute value of the linear model coefficients
max bLð Þ Maximum of the absolute value of the linear model coefficients
CN Ratio between the minimum and maximum absolute values of the quadratic term coefficients

in the purely quadratic model
Cross-validated classification error of the level-set model

Information significance n Dð Þ Significance of order k

e kð Þ Entropic epistasis of order k

Length scale pr Dy= Dxk kð Þ Probability density function of Dy= Dxk k

II Fitness sequences Hmax Maximum information content
�S Settling sensitivity
M0 Initial partial information

Evolvability Ea Evolvability
Pi Average escape probability
NSC Negative slope coefficient
AEP Accumulated escape probability

III Probability of convexity Ratio between the number of solution pairs for which the difference between their estimated
and real cost is less than a threshold, and the total number of pairs

IV Fitness sequences ACFs Auto-correlation function
‘ Correlation length

ACF Average auto-correlation

Basin sizes and distribution �b Average basin size
Average distance between local optima
Size of the largest and fittest basins
Distance between the largest and fittest basins

Curvature pr rfj jð Þ Probability density function of the gradient norm
Probability density function of the Hessian condition number
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A second set of methods measure the landscape modality and the global structure strength using an estimation of the
probability density function (pdf) of Y [16,130]. For a piecewise invertible function, the pdf of Y is related to the first deriva-
tive by the Perron-Frobenius operator:
pdf yð Þ ¼
X

x2f�1 yð Þ

pdf xð Þ
f 0 xð Þ
�� �� ð3Þ
This implies that by characterizing the pdf of Y through its skewness, c Yð Þ, kurtosis, j Yð Þ, number of peaks, and entropy,
H Yð Þ [90,91], we obtain some information about the magnitude of the gradient of f.

A similar method characterizes the pdf of the difference in fitness, yi � yj, over the difference in position, xi � xj

�� �� [98].
The pdf is summarized using the entropy. The authors suggest sampling using a Lèvi flight, as it produces clusters of candi-
dates uniformly distributed over X; hence, it is thought to provide good coverage of X .

A third set of methods use the fit of a regression or classification model as a measure of the landscape modality and global
structure strength. The fit of a linear or quadratic regression model can be thought of as the distance to a reference problem
[45,91], and it is evaluated using the adjusted coefficient of determination, R2. Moreover, variable scaling is measured using
the maximum and minimum of the absolute value of the coefficients from the linear model without interactions, and the
ratio between the minimum and the maximum absolute values of the quadratic term coefficients of a quadratic model with-
out interactions [91].

For a classification model, the output sample is divided into two classes using a threshold, e.g., the lower or upper quar-
tiles of the fitness distribution. According to [91], an unimodal function could be cleanly cut by the hyperplane defined by a
linear or quadratic classifier, whereas a multimodal function could only be cleanly cut by a non-linear classifier. The fit is
evaluated using the cross-validated miss-classification rate [91].

A fourth set of methods focuses on variable dependencies, i.e., the ease in which f can be broken down into simpler prob-
lems of lower D [92]. Most methods focus on linear interactions [28,37,105,124,127,128], e.g., the fit of a linear model with



M.A. Muñoz et al. / Information Sciences 317 (2015) 224–245 235
interaction terms [91]. However, non-linear interactions may be expressed as the joint probability of a subset of variables,
and measured using mutual information [132]. Let V ¼ 1; . . . ;Df g be a set of variable indexes, where v 2 V is the index of a
variable, and V � V is a combination of variables. The significance of V ; n Vð Þ, is the ratio between the mutual information,
I XV ; Yð Þ ¼ H XVð Þ þ H Yð Þ � H XV ;Yð Þ, and the cost entropy, H Yð Þ. This ratio is also known as the uncertainty coefficient or
Theil’s U. The epistasis of a combination V ; e Vð Þ, is calculated as follows:
Fig. 8.
dashed
e Vð Þ ¼ I XV ; Yð Þ �
P

v2V I Xv ; Yð Þ
I XV ; Yð Þ ð4Þ
The results are summarized using the average significance, n kð Þ, and average epistasis, e kð Þ, of order k, where k ¼ Vj j.

6.2. Type II: Local unstructured methods

The first type II method analyzes a sequence of fitness values, S ¼ y1; . . . ; ynf g, obtained by sorting a uniformly distributed
sample [103]. The starting element in the sequence is a candidate from the sample selected at random, while the remaining
elements in the sequence are selected using the nearest neighbor heuristic, i.e., the element whose Euclidean distance is the
lowest to the current element. To avoid backtracking, any candidate already in the sequence is excluded from the nearest
neighbor calculations. Known as ICOFIS, it is an adaptation of the method described in [85,144,153], where a random walk
is used to collect the sample and generate the sequence, instead of sorting a uniformly distributed random sample. However,
this approach biases the sample unless n!1 [103]. A bias correction method, such as stratified or weighted sampling
[26,101,170], is needed when a random walk with n�1 is used.

Let U �ð Þ ¼ /1; . . . ;/n�1f g be a symbol sequence where /i 2 �1;0;1
� �

, converted from S by following the rule:
W i; �ð Þ ¼

�1 if Dy
Dxk k < ��

0 if Dy
Dxk k

���
��� 6 �

1 if Dy
Dxk k > �

8>>><
>>>:

ð5Þ
where Dy is the difference between yiþ1 and yi; Dxk k is the Euclidean distance between xiþ1 and xi, and �P 0 is a sensitivity
parameter that sets the accuracy of U �ð Þ. For example, U 0ð Þ has a zero if and only if there are neutral areas in the landscape.
On the other hand, U �ð Þ is all zeros if � is larger than the maximum Dy. The method accounts for the uncertainty added by the
step size represented by Dxk k. The value of Dy

Dxk k converges to the derivative if Dxk k ! 0. Two consecutive symbols compose a

block, which represents a slope, peak or neutral area in the landscape. The information content of S is defined as
H �ð Þ ¼ �

P
a–bpablog6pab, where a; b 2 �1;0;1

� �
and pab is the probability of finding the block ab in the symbol sequence.

The logarithm base is six because this is the number of possible blocks where a – b. H �ð Þ is bound between 0;1½ �, and
0log60 � 0.

The result from H �ð Þ is not an explicit measure of the landscape smoothness [153]. For this purpose, a new sequence,
U0 �ð Þ, is constructed from U �ð Þ by removing all the zeros and repeated symbols. U0 �ð Þ has the form ‘‘. . . �11�11�1 . . .’’ and rep-
resents the changes in concavity encountered during S. The partial information content, M �ð Þ, characterizes the landscape

smoothness [153] and it is equal to M �ð Þ ¼ U0j j
n�1 with n	 1. The results are plotted against � resulting in the curves in

Fig. 8, which are summarized by the following measures: Maximum information content, Hmax ¼max� H �ð Þf g, settling sen-
sitivity, �S ¼ log10 min� � : H �ð Þ < 0:05f gð Þ, initial partial information, M0 ¼ M � ¼ 0ð Þ. The three measures correspond to
points on the H �ð Þ and M �ð Þ curves as illustrated on Fig. 8. At Hmax;U �ð Þ has the highest diversity. Hence, rugged landscapes
are expected to have high value of Hmax [85]. At �S;U �ð Þ is nearly all zeros. Hence, it represents the maximum change of fit-
ness found during S and indicates the scaling of the problem. Furthermore, �S is strongly correlated (
 0:96) to the entropy of
the fitness pdf, H Yð Þ [103]. At M0;U �ð Þ has the highest number of inflexion points, providing information about the landscape
ruggedness. The accuracy of the measures increases with the number of distinct values of � used.
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Typical curves for H �ð Þ and M �ð Þ and their derived measures. The horizontal axis represents the sensitivity parameter � on a log10 scale. The black
lines are visualization aids.
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A second set of measures is based on the estimated escape probability, or evolvability, of a fitness landscape, Ea, which is
loosely defined as the ability of an individual or population to generate fitter candidates [135]. More formally, evolvability is
defined as the probability that a fitter candidate can be found within a candidate’s neighborhood [135] as follows:
Ea yið Þ 

y : y 2 N r yið Þ; yi P yf gj j

N r yið Þj j ð6Þ
Therefore, high evolvability means that there is a high probability of finding a fitter candidate within the neighborhood.
Hence, a search algorithm is likely to be successful in exploring the landscape. On the other hand, low evolvability means
that it is unlikely that fitter candidates will be found within the neighborhood. Therefore, a search algorithm will find dif-
ficult to explore the landscape efficiently. There are three methods that use the concept of evolvability to analyze a land-
scape: The evolvability portrait, which is a plot of Ea against yi [135]; the fitness–fitness cloud, which is a plot of the
fitness of the neighbors against yi [151]; or a fitness–probability cloud, which is a plot of the average escape probability,
Pi, against yi [82], with Pi calculated as follows:
Pi ¼
P

yj2Ci
Ea yj

� �

Cij j
ð7Þ
where Ci ¼ yjy P yif g, i.e., Pi is the average evolvability of all the candidates with worse fitness than the current candidate.
Ideally, a smooth trend should be observed on these plots from the unfit to the fitter candidates. The trend may be summa-
rized by the negative slope coefficient [151], NCS, for the fitness–fitness cloud, and the accumulated escape probability [82],
AEP, for the fitness–probability cloud. Although both measures are simple to calculate, they are impractical due to their high
computational cost and dependency to the neighborhood radius, r.

6.3. Type III: Global structured methods

Type III methods are perhaps the less common type reported in the literature. An example of these methods measures the
probability that the space between two candidates is convex [91]. A candidate xk is generated using a linear combination of
two other candidates, xi;xj

� �
, and its fitness, ŷk, is estimated using a convex combination of yi; yj

� �
. The probability of con-

vexity is defined as the ratio between the number of xi;xj
� �

combinations for which the difference between yk and ŷk is less
than a threshold, and the total number of xi;xj

� �
combinations.

6.4. Type IV: Local structured methods

A first set of type IV methods analyze a sequence of fitness values, S, obtained from a random walk over X . This includes
the original ICOFIS [85,144,153], the structured version of the type II method presented in Section 6.2. The auto-correlation
function of S;ACFs, is one of the earliest proposed ELA methods [160]. It is calculated as follows [93]:
ACFs ¼
1

r̂2
y n� sð Þ

Xn�s

i¼1

yi � �yð Þ yiþs � �y
� �

ð8Þ
where s is the number of delays over which the auto-correlation is calculated, �y is the mean fitness, and r̂2
y is the sample

fitness variance. It has been suggested that ACF1, also known as correlation length or nearest neighbor auto-correlation, cap-
tures the landscape smoothness efficiently [143]. Assuming that ACFs is an exponential function of s, the normalized corre-

lation length, ‘, is zero if ACF1 is zero. Otherwise, ‘ ¼ � ln ACF1j jð Þ�1. A high value of ‘ implies that a local search finds a high
fitness solution after a high number of function evaluations [93], whereas a low value of ‘ implies that the algorithm con-
verges prematurely on low fitness solutions. It was thought that ACFs, plus the mean and variance of the fitness pdf, would
completely characterize a landscape [161]. However, it has been demonstrated neither ACF nor ‘ are sufficient to characterize
all landscapes [118].

For continuous optimization problems, ACF has been defined as [90]:
ACF rð Þ ¼ 1
r2

y

1
N rj j

X
xi ;xjð Þ2N r

yiyj � yi þ yj

� �
�yþ �y2� �

; ð9Þ
where N r xð Þ ¼ xi : xi � xk k ¼ rf g. Over a set of values of r;R, the average auto-correlation is defined as the sum of ACF rð Þ
over the cardinality of R. With a uniformly distributed random sample, it is unlikely that N r xið Þj j 	 1 for any r. Hence, can-
didates are sampled in pairs. The first one is selected from anywhere in X , while the second is selected at a distance of r 2 R
from the first.

A second set of type IV methods estimate the pdf of the size of the basins of attraction, B xlð Þj j, defined as the volume from
X occupied by each basin [40]. As described in Section 3.2, to estimate the size of a basin, a local search starts from a random
candidate in X , stopping only when it converges to a local optimum. After carrying out n local searches, a basin is observed if
at least one search has converged to it. Fig. 9a illustrates the results for the Six-hump Camel-back function. The function is



(a) (b) Probability distribution of basin sizes

Fig. 9. Basins of attraction for the Six-hump Camel-back function estimated using a local search method [40]. (a) Is a contour plot, where each mark
represents one of 2000 candidates used as starting points for the local searches, their color representing one of six observed basins. (b) Is the best-fitting
gamma distribution of the basin volume, measured as a percentage of X . (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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presented a contour plot, where each mark represents one of 2000 candidates used as starting points for the local searches,
their color representing one of six observed basins.

The volume of an observed basin could be estimated as the percentage of candidates that where drawn to its local optima.
However, this ignores the volume of potentially unobserved basins. For this purpose, a gamma [40] or exponential [17] pdf is
fitted to the data, as illustrated in Fig. 9b for the Six-hump Camel-back function. In the figure, the horizontal axis represents
the volume of the basin measured as a percentage of X . Let �b be the average basin volume, which is estimated as follows:
�b ¼
1� 1þ #

c0

� 	c0

a
ð10Þ
where c0 is the parameter from the best fitting gamma distribution. According to [40], Eq. (10) has a solution at # equal to the
ratio between the sample size and the total number of basins. To improve the estimation, non-parametric method may be
used for large input spaces [123]. Alternatively, a random walk may be used instead of the local search [3]. Furthermore, the
size, number and location of the local optima are used to calculate additional measures: the average distance between local
optima [19,158], and the size and distance between the largest and fittest basins [19].

These methods are expensive, as they require numerous function evaluations. For example, for the 2000 candidates illus-
trated on Fig. 9, nearly 2:6� 105 function evaluations were used in the local searches. Alternatively, only the starting points
may be used to estimate the number of basins [101]. Using a Delaunay triangulation, a network is constructed in which the
local search is carried out. Although the cost in function evaluations decreases, calculating the Delaunay triangulation is
computationally expensive for D > 3, and limited to D � 8.

A third set of type IV methods measures the function curvature by numerically estimating the Gradient and Hessian at
each candidate, using extrapolation [91] or finite differences. The results are summarized using the pdf of the Euclidean
norm of the gradient and the condition number of the Hessian.
6.5. Discussion

In summary, ELA methods attempt to quantify the landscape complexity, focusing on the characteristics described on
Section 3. Some methods use a specific sampling procedure. Others require information about the candidates’ neighborhood.
Hence, ELA methods range from computationally simple (type I) to complex (type IV).

ELA methods are not exempt from criticisms. First, most of the work attempts to provide a single, all encompassing, mea-
sure of complexity. This approach is optimistic, as it is the interplay between characteristics that defines difficulty. As such,
several complementary measures are necessary [10,95,135]. Second, ELA methods require a large sample to be precise
[66,95,149]. The sample size grows exponentially with D; hence, ELA methods are imprecise in polynomial time [53].
However, as ELA methods are rooted in statistical analysis, their uncertainty can be estimated using resampling methods.
Fewer function evaluations may be needed if the methods are used during an algorithm run [104]. However, the bias
imposed by the algorithm must be corrected to avoid deceiving results [101].
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Third, it is unclear whether the existing methods are sufficient, even necessary. Since the difficulty of a problem is relative
to the algorithm used [54], an ELA method lacks utility if it fails to provide information about the strengths and weaknesses
of any algorithm. However, there is evidence that even type I methods are sufficient to identify a good algorithm for a given
optimization problem [1,14,91,102,103]. We discuss these contributions in the following section.
7. The selection framework and related techniques for black-box continuous optimization problems

The algorithm selection framework based on the work of Rice [125] has been applied in many domains, including com-
binatorial auctions [39,74,75], clustering [2,77,76,148], feature selection [157], graph coloring [138,141], mixed integer pro-
gramming [65,168], planning [61], program induction [44,45], quadratic assignment [136], satisfiability [39,62,65,69,87–
89,166], scheduling [9,139], time series [46], the traveling salesman problem [65,70], among other domains [73,137].
Most of these works use one of two alternative implementations of a meta-model, both illustrated in Fig. 10 using a set
of four algorithms as example. The first uses a classification model [125]. The second uses a regression model per algorithm
to learn the map gi : C ! P [75]. For both approaches, it is required a knowledge base containing the characteristics of all
problems in a subset, F � F , and the performance of all algorithms in a subset, A � A, for all problems in F. Both models
are trained using the characteristics as input patterns. The classification model uses the best performing algorithm as the
output pattern. The regression models use the performance measure as the output pattern, and a sorting method selects
the algorithm with the best predicted performance.

There are trade-offs associated with each implementation. The classification model is monolithic; hence, it has fewer ele-
ments prone to failure than the regression model. However, adding or removing algorithms imply the re-training the clas-
sification model, whereas the regression model is modular. Another trade-off is a consequence of an algorithm failing to
produce a solution a problem in F within the computational budget. Therefore, the algorithm run has been censored. The
results from these runs leave gaps in the knowledge base, affecting the data quantity for regression models. To fill in the
gap, the budget can be used as the real-run time, or as a lower bound used to estimate the real run-time [131]. However,
censoring is not an issue for a classification model, if there is at least one algorithm that produces a solution for every prob-
lem in F.

In the BCOP domain, there is a paucity of work examining the algorithm selection problem or describing applications of
Rice’s framework [125]. For example, Francois and Lavergne [38] used a regression model to predict the performance of an
Fig. 10. Diagram of two approaches to construct a meta-model using experimental data and machine learning techniques. The models relate two
components of the algorithm selection framework illustrated in Fig. 1: the characteristics and algorithm spaces.
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evolutionary algorithm. The inputs to this model were limited to the algorithm’s parameters. Although Francois and
Lavergne hinted that problem classes could be related to performance, they did not provide any detail into how to determine
such classes. Therefore, a new model had to be trained for each problem, limiting its application in realistic scenarios.

More recently, Bischl et al. [14] used a cost sensitive learning model to select the best algorithm between BFGS,
BIPOP-CMA-ES, LSstep, and LSfminbnd. This type of models is trained to produce accurate performance predictions for
the best algorithm only. The knowledge base was composed of 360 problem instances, drawn from the Comparing
Continuous Optimization (COCO) benchmark set [49] at ten dimensions, which was deemed as a representative dimension-
ality. Each problem was characterized using 19 measurements, extracted using a mixture of type I, III and IV ELA methods.
Additionally, the set of four algorithms was manually selected using the complete knowledge base. The model was verified
using two cross-validation approaches. In the first one, five instances from each problem were used as test set; hence, the
accuracy on unobserved instances of observed problems is estimated. On the second approach, all the instances from one
problem were used as test set; hence, the accuracy on unobserved problems is estimated. However, their set of four algo-
rithms was manually selected using the complete knowledge base, weakening the validation on unobserved problems.
Furthermore, the results may not be generalizable for a knowledge base with problems of different dimensionalities.

In previous work [102], we have used a regression model to identify the best out of eight parameter combinations for the
CMA-ES algorithm. The knowledge base was composed of 1800 problem instances, drawn from the COCO benchmark set at
2;3;5;10;20f g dimensions. Each problem was characterized using seven type I measurements and four parameters. Among

the predictors was the target precision, included to minimize the gaps in the database due to censoring. However, this
approach resulted in a model that often underestimated the performance on the hardest problems. Furthermore, with a sam-
ple size of n 
 105 � D, the ELA measurements were too expensive to be practical. During validation, we compared the mod-
el’s accuracy against randomly selecting a configuration on unobserved instances of observed problems only.

Abell et al. [1] employed ISAC, a configuration method for portfolios of SAT solvers [69], to select the best performing
algorithm from a group of 21 algorithms for the COCO benchmark set. The knowledge base was composed of 1289 problem
instances at 2;3;5;10;20;40f g dimensions, which excluded all instances with censored runs. The core of ISAC is a classifi-
cation model, which uses ten characteristics as predictors, seven of which are extracted using type I and IV ELA methods.
Therefore, the best performing selector required nearly 50 times more function evaluations than the baseline algorithm.
Furthermore, the validation was limited to unobserved instances of observed problems.

These works demonstrate that the weakest link on the framework’s application is the computational cost of the ELA
methods. However, the selection framework is one of several related approaches, which aim to improve the performance
by combining algorithms with different strengths. Perhaps, the simplest one is to run sequentially or in parallel a set of algo-
rithms [41]. These algorithm portfolios aim to improve the performance by distributing the available resources among mul-
tiple algorithms as efficiently as possible [115]. For example, Montez de Oca et al. [96] identified and combined three fast and
reliable PSO variants. Vrugt et al. [156] interleaved five meta-heuristics – CMA-ES, GA, PSO, DE and PCX. Peng et al. [115]
distributed the function evaluation budget between the algorithms, and used a migration scheme to exchange information
between algorithms. Statistical tests were used to identify and stop prematurely convergent algorithms, whose function
evaluation budget was redistributed over the remaining ones.

Algorithm portfolios are closely related to hybrid meta-heuristics [15,154] and hyper-heuristics [47,112]. In the former,
one or more algorithms are interleaved with the aim to produce synergies between them [15,154,156]. For example, a
memetic algorithm pairs a population-based search method, usually an evolutionary algorithm, with a local refinement
method, often a line search [23]. Hyper-heuristics construct algorithms by adding components to an ‘‘empty’’ one, or by
improving iteratively a randomly generated initial algorithm [47,112]. The hyper-heuristic may be constructed on-line,
i.e., while the problem is being solved, or off-line, i.e., the best performing hyper-heuristic over a set of problem instances
is selected from a group [112]. Statistical racing can be thought of as an off-line hyper-heuristic. This method evaluates a
set of candidate algorithms on a stream of instances, where an algorithm drops out from the race when sufficient evidence
is collected against it [13].

Parameter tuning and control refers to the methods employed to automatically adjust the algorithm parameters [33,35].
Tuning aims to find a parameter set applicable to a wide range of optimization problems. Hence, it can also be thought of as
an off-line hyper-heuristic. Tuning involves experimenting with different parameter sets over a suite of test problems, and
selecting the best performing. Tuning has some drawbacks [29,33,34,114]: First, the parameters are mutually dependent and
systematically testing all combinations is impractical. Second, even if the tuning effort was significant, the resulting param-
eters are not necessarily optimal for all problems. Third, tuning ignores the fact that an algorithm run is a dynamic and adap-
tive process. Fourth, it is unclear whether perceived similarity between problems implies similar optimal parameter set.
Fifth, when a theory-based tunning approach is used, the complexities of the search and characteristics of the problems must
be notably simplified.

On the other hand, control refers to the methods for adjusting the parameters during the run, potentially improving them
while solving the problem [33]. These methods leverage the information accumulated about the problem during the search.
Hence, they can be thought of as an on-line hyper-heuristic. For effective parameter control, only the most influential param-
eters should be adjusted. Arguably, control methods are a good example of over-engineering an already sophisticated adap-
tive system [29], or that control techniques introduce new selectable parameters to the algorithm [114]. Furthermore,
control methods are against the principle of self-organization [134].
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Algorithm portfolios, hybrid meta-heuristics, and hyper-heuristics have common disadvantages. They neglect the infor-
mation collected on previous experiments, and they do not examine the similarity between the current problem with others
previously observed [23]. Therefore, they fail to provide deeper insight into the relationship between problem structure and
algorithms. As such, they are themselves black-boxes treated with suspicion by the users, who distrust anything that gives
solutions without justifications [94]. Furthermore, they are subject to the NFLT [165], i.e., a method might work for some
problems but fail in others [15]. Hence, the process of designing, selecting and adjusting search algorithms for BCOPs is cum-
bersome, requiring expert knowledge on several algorithms, and skills in algorithm engineering and statistics [15]. In other
words, it remains an art rather than a science [97].
8. Conclusions and further research avenues

The problem of algorithm selection, that is identifying the most efficient algorithm for a given computational problem, is
a non-trivial task. In this paper, we have presented a detailed review of key concepts, methods and evaluation techniques for
algorithm selection for BCOPs. The algorithm selection framework proposed by Rice [125] was described in detail. This was
followed by a description of the four components – problem, algorithm, performance and characteristic – couched in terms
of the requirements for continuous optimization problems. Next, we proposed a classification of ELA methods based on com-
putational costs and their focus on global or local information, and the sampling technique employed (unstructured and
structured). Then, we discussed applications of the framework in the BCOP domain. Finally, the relationship between the
algorithm selection framework and algorithm portfolios, hybrid meta-heuristics, and hyper-heuristics was also discussed.
In the remainder of this section, we identify remaining challenges and propose future research directions.

The algorithm selection problem is ill-defined due to the complexity and size of the problem and algorithm spaces. Hence,
a formal solution to the algorithm selection problem may not exist. Similar ill-defined problems are solved using decision
support systems (DSS), i.e., computational systems that leverage data and models. The selection framework fits into this
description, and it would bridge the gap between the collection and usage of experimental data [56] existing on related
approaches such as hyper-heuristics. Furthermore, the framework may identify relative strengths and weaknesses of the
algorithms [140]. Besides the limitations identified on [1,14,102], the BCOP domain adds challenges to the implementation
of the DSS, most of them absent in other domains.

It is unclear, particularly for stochastic algorithms, how their performance is affected by the problem characteristics.
Although theoretical analysis of stochastic algorithms has advanced significantly in the latest few years [5,67,106], it is still
limited to simplified problems [111]. Nevertheless, theoretical insights clarify the effects of the problem characteristics,
which in turn would focus the development of ELA methods.

Furthermore, there is limited, if any, information about the problem instance available beforehand in a BCOP. Gathering
sufficient and accurate information through ELA methods requires numerous function evaluations, on top of the ones
required by the search algorithm. Hence, performance of the DSS is affected by the accuracy of the characteristic measures
in two ways. Assuming that accurate measures reduce the selection error of the DSS, we could collect a large sample to cal-
culate the measures as accurately as possible, leaving a small proportion of the function evaluation budget for the search. On
the other hand, assuming that more than one algorithm may solve the problem, we could allow a higher error on the mea-
sures by collecting a smaller sample, leaving a larger proportion of the budget for the search. The balance between measure
accuracy and search budget is equivalent to the exploration/exploitation balance.

Ideally, the cost of calculating the measures should be encapsulated within the search budget. This may be achieved by
restarting the algorithm from the sample instead of random positions, as described in Section 5, improving simultaneously
the heavy-tailed behavior of the performance [42]. Alternatively, the selection could be parallel to the search. A possible
implementation of such a DSS, illustrated on Fig. 11, has two feedback loops. In the analysis loop, data from the problem
is used to estimate the measures and predict the best algorithm. In the optimization loop, data from the problem is used
in the algorithm portfolio to generate new candidates. The selection mechanism acts as a switch that allows a candidate
to be evaluated if it corresponds to the selected algorithm.

The portfolio may initialize the algorithms in parallel, and then switch them on and off as data is collected. A first set of
measures can be made during the algorithm initialization stage, which are improved during the search. However, the bias on
the measures increases as the search progresses, because the candidates are generated from limited areas of the input space.
This is perhaps the most difficult limitation to overcome if the system is to be implemented.

Most ELA methods are heuristics; hence, the evidence supporting their theoretical soundness is scarce. Hence, it may be
unproductive to spend most of the budget on the ELA methods. Allowing a higher error on the measures requires an under-
standing of the error magnitude and its impact on the DSS performance, which may be significant. Such understanding could
be gained by analyzing the measures as random variables dependent on the problem instance, f, and sample size, n. The error
is represented by the variance, which should converge to zero when n!1, otherwise it depends on f and n. Studies of the
stochastic convergence of each measure are dependent on f; hence, they may lack practical relevance. However, more prag-
matic approaches may uncover flaws on the ELA methods. For example, in [103], bootstrapping, significance tests, and
meta-analysis techniques demonstrated that some measures had the same value regardless of the problem instance, sample
size or dimension. Accuracy analysis is lacking for most ELA methods, even though it should be an integral part of the
validation.



Fig. 11. Proposed structure for an on-line algorithm selection system, which has two feedback loops: In the analysis loop, the Decision Support System
selects an algorithm from the portfolio. In the optimization loop, the portfolio generates new candidates.
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Similarly, due to their questionable theoretical soundness, an ELA method may include assumptions that are incorrect or
limiting. For example, several ELA methods use Euclidean distance to measure differences between candidates. However,
this distance metric quickly converges to a constant value as the dimension increases [99]. Challenging these assumptions
may lead to theoretical sound methods. Alternatively, there may be other mathematic fields which have studied the problem
of characterizing a function. Inspiration for new ELA methods could be drawn from fields such as topology and differential
geometry.

Although there are calls to adapt methods from discrete to continuous search spaces [86], the results may be unsatisfac-
tory due to the lack of clearly defined neighborhoods. For example, in [101] a cheaper estimator of the size of the basins of
attraction [17,19,40,123,158] was proposed. The neighborhood was defined using Delaunay triangulation, limiting the
method to lower dimensions. Although a binary partition would address this limitation, a parameter is added to control
the neighborhood size. Hence, the resulting measures would be dependent on this parameter, along with f and n.

The work in [1,14,102] is limited by the size of the knowledge base, which could be expanded by adding of new instances.
One approach is to collect instances from libraries such as CUTEst [43]. However, this does not guarantee that the new
instances are dissimilar with the ones already existing in the knowledge base. Alternatively, new instances may be evolved
using a generator [140]. A visual representation of the problem space would be useful to identify empty areas. This repre-
sentation should maintain the neighborhood structure existing in high dimensions. Furthermore, the generator should have
sufficient flexibility to push the instances towards these areas.
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