Extended Differential Grouping for Large Scale Global
Optimization with Direct and Indirect Variable Interactions

Yuan Sun
Department of Mechnical
Engineering
The University of Melbourne

Parkville, Australia
yuans2@student.uni-
melb.edu.au

ABSTRACT

Cooperative co-evolution is a framework that can be used to
effectively solve large scale optimization problems. This ap-
proach employs a divide and conquer strategy, which decom-
poses the problem into sub-components that are optimized
separately. However, solution quality relies heavily on the
decomposition method used. Ideally, the interacting deci-
sion variables should be assigned to the same sub-component
and the interdependency between sub-components should be
kept to a minimum. Differential grouping, a recently pro-
posed method, has high decomposition accuracy across a
suite of benchmark functions. However, we show that dif-
ferential grouping can only identify decision variables that
interact directly. Subsequently, we propose an extension of
differential grouping that is able to correctly identify deci-
sion variables that also interact indirectly. Empirical stud-
ies show that our extended differential grouping method
achieves perfect decomposition on all of the benchmark func-
tions investigated. Significantly, when our decomposition
method is embedded in the cooperative co-evolution frame-
work, it achieves comparable or better solution quality than
the differential grouping method.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization

Keywords

Variable interaction, problem decomposition, cooperative co-
evolution, large scale global optimization

1. INTRODUCTION

Evolutionary algorithms (EAs) are meta-heuristics that
can be used to solve a wide range of optimization problems.
However, when the problem has a large number of decision

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

GECCO 15, July 11 - 15, 2015, Madrid, Spain
© 2015 ACM. ISBN 978-1-4503-3472-3/15/07.. . $15.00
DOL http://dx.doi.org/10.1145/2739480.2754666

Michael Kirley
Department of Computing and
Information Systems
The University of Melbourne

. Parkville, Australia
mkirley@unimelb.edu.au

313

Saman K. Halgamuge
Department of Mechnical
Engineering
The University of Melbourne
Parkville, Australia
saman@unimelb.edu.au

variables — large scale global optimization — it becomes diffi-
cult for an EA to find the optimal solution [8, 22].

Cooperative co-evolution (CC) [16] has been used with
some successes when tackling large scale global optimization
(eg. [12]). In CC, the optimization problem is divided into
sub-components that are evolved independently. The final
solution is a concatenation of representatives from each of
the sub-components. In the original paper by Potter et al.
[16], it was shown that the CC genetic algorithm was able
to solve separable optimization problems, however it was
ineffective on non-separable problems. These results may in
part be attributed to the fact that the CC approach did not
take variable interactions into consideration when allocating
decision variables to sub-components.

When using a CC framework, it has been shown that
the overall performance is correlated with the decomposition
method used [1, 12]. Ideally, the interacting decision vari-
ables should be assigned to the same sub-component and the
interdependence between sub-components should be kept to
a minimum. Unfortunately, identifying the interacting vari-
ables in many optimization problems is non-trivial.

Recently, Omidvar et al. [12] proposed a decomposition
method — differential grouping (DG) — that can be used when
allocating decision variables to sub-components when using
the CC framework. Results from detailed numerical simu-
lation experiments indicate that the DG method had high
decomposition accuracy on most of the benchmark functions
investigated [20]. However, on some benchmark functions,
such as the Rosenbrock functions, the decomposition accu-
racy was very low. This suggests that the decomposition
method described did not cover all forms of decision vari-
able interactions.

In this paper, we investigate the effects of interactions be-
tween decision variables and decomposition methods within
the CC framework. We start by considering the form of de-
cision variable interaction in optimization problems such as
the Rosenbrock functions. We suggest that there are two
distinct types of variable interactions as shown in Figure 1.
In Type I interactions, the variables interact directly eg. x1
and x2 (or x2 and z3) interact directly. In Type II inter-
actions, the variables have a form of indirect interaction eg.
x1 and x3 are linked by x2. The formal definition of these
two types of variable interactions will be given in Section
3. We show that DG can only capture Type I interactions
and fails to capture Type II interactions between decision



Figure 1: Two types of decision variable interac-
tion. Type I: two variables interact directly with
each other. Type II: two variables interact indi-
rectly, that is they are linked via a third variable.

variables. We hypothesize that this is the reason why DG
performs poorly on the Rosenbrock functions.

We propose an eXtended Differential Grouping (XDG)
method to cater for the different forms of variable interac-
tions. In XDG, after allocating decision variables that in-
teract directly to nominated sub-components, “overlaps” be-
tween sub-components are identified. That is, when an over-
lap is observed, the sub-components that contain the same
decision variables are merged. This searching—merging tech-
nique is employed to capture Type II interaction between de-
cision variables. The efficacy of the XDG is evaluated using
the benchmark functions from the CEC’2010 special session
on large scale global optimization [20]. The experimental re-
sults show that XDG achieves perfect decomposition on all
of the benchmark functions. We then embed XDG into the
CC framework to solve large scale optimization problems.
Empirical studies show that on the benchmark functions
with Type II interactions, the proposed approach achieves
significantly better results than the CC with standard DG.
On the benchmark functions without Type II interactions,
the proposed approach achieves comparable results with the
CC with standard DG.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the related work. Section 3 shows the lim-
itation of DG and proposes an extension to address this
limitation. Section 4 sets up the experiments and analyses
the experimental results. Section 5 concludes the paper.

2. RELATED WORK

In this section, we briefly describe studies related to vari-
able interaction within an evolutionary computation con-
text. We also summarize well-known decomposition meth-
ods used within the CC framework, before describing the
DG method in detail.

Investigating the effects of interactions between “bits” or
decision variables — epistasis or linkage — in genetic algorithm
research has a long history (see [4]). The original motivation
behind much of this work, was to improve the design and
effectiveness of the genetic operators. For example, specific
crossover operators allow a set of interacting binary variables
to be inherited together in the evolutionary process, such as
the model used in the messy GA [3], fast messy GA [5],
gene expression messy GA [7]. Significantly, there is work
describing the level of epistasis and problem difficulty. For
example, papers describing epistasis variance [2], epistasis
correlation [17] and entropic epistasis [18] have been used to
quantify the variable interactions and problem difficulty.

314

In the continuous optimization domain, many studies have
examined the effects of variable interactions and used this to
guide the evolution trajectory. For example, estimation of
distribution algorithms [9] build a probabilistic model based
on the promising candidate solutions and updates the model
during each generation. The population for the next gener-
ation is sampled from the probabilistic model. In the co-
variance matrix adaptation - evolutionary strategy [6], the
population evolves with the mean and covariance matrix of
the promising candidate solutions. In each generation, the
mean and covariance matrix are calculated from the promis-
ing candidate solutions. The population for the next gener-
ation is sampled from the mean and covariance matrix.

In the CC framework, the decomposition methods that
are typically used are based on some measures of decision
variable interaction. Perhaps the simplest decomposition
method is random grouping [23]. In the random grouping
decomposition method, decision variable allocations are ex-
changed (or modified) a few times to increase the probabil-
ity of assigning interacting decision variables into the same
sub-component. However, it has been shown that when the
number of interacting variables is greater than two, it is un-
likely to put all of them into the same sub-component [13].

Perturbation methods, which include LINC-R [10], LIMD
[11], CCVIL [1], differential grouping [12], and delta group-
ing [14] can also be used when allocating decision variables to
sub-components. Perturbation methods identify interaction
between two decision variables by adding a small perturba-
tion to the decision variables and detecting the changes in
the fitness values. However, these methods are sensitive to
the computational errors in the system.

In the DG method introduced by Omidvar et al. [12], in-
teractions between decision variables are identified according
to the following rule: if

— —

Ax'if(X)|Ti:avzj:b1 # Ag, f(X)|Ii:av"Ej:b27
then z; and z; are interacting decision variables, where
Ao f(X) = f(... (2)

In DG, when changes in f caused by adding a perturbation
to xz; varies for different values of x;, then x; and z; are
interacting decision variables.

(1)

Jmi 40, — f( ..

s Liy e )

3. EXTENDED DIFFERENTIAL GROUPING

In this section, we define two types of interactions between
decision variables and show that the DG method can only
identify one type of interaction. An extension of DG, which
we refer to as XDG@G, is proposed to address this limitation.

In Figure 1, we illustrate two alternative forms of vari-
able interactions between decision variables. In Type I, two
variables interact directly with each other. In Type II, two
variables are linked via a third decision variable. We call the
former direct interaction and the latter indirect interaction.
The formal definition of interacting types is listed below:

DEFINITION 1. In an objective function f(X), decision
variables x; and x; interact directly with each other if 3 a
candidate solution T, s.t.

of

a.l‘iaxj Tx

#0, ®3)



denoted by x; <> x;. Decision variables x; and x; interact
indirectly with each other if for all candidate solutions,

of  _
81&'837]' =0

(4)

and 3 a set of decision variables {Ti1,..., 2k} C )2, s.t.
Ti 4> Tkl &> ... & Tpe < 5. Decision variables x; and x;
are independent with each other if for all candidate solutions,
(4) holds and A a set of decision variables {Tr1,..., 2K} C
)?, S Ty £ Tl > .. 4 Tt & Tj.

Consider the following example to further explain this def-
inition:

EXAMPLE 1. In the objective function: f()_(‘) = (o1 —
22)? + (z2 — x3)? + 23, X € [-1,1]*, 21 and o interact
directly with each other (Type I), x1 and x3 interact indi-
rectly with each other (Type II), x1 and x4 are independent.

X), if (4) holds,

THEOREM 1. In an objective function f(
then

Aitif()?)'zi:avzj:bl Az, fX )|9317a z;=b2
where Ay, f(X) is defined in (2).

PrOOF. If (4) holds, integrating (4) with respect to z;,
we can obtain:

()

9 .
8:51- = /dej = g(Xk),

where X5, C )?, z; ¢ Xk, g(X?k) is a function of Xj.
states 0f/0xz; is not a function of ;. Therefore V z;,

(6)

That

0 0
317{ @j=by - 89{1- @ =by ™
That is
AcfX)| A X)) @®)
0 z;=by 0 zj=by
Thus,
Ay f(X)y=br = Do f(X) |y =bs 9)

is true for all ;. Thus, (5) is obtained. [J

In an objective function, if z; and z; interact indirectly
with each other, then (4) holds. According to Theorem 1, (5)
holds. DG will classify x; and z; as independent. Therefore,
DG can not capture indirect interaction (Type II) between
decision variables. This is the main limitation of DG.

Now consider a second example:

EXAMPLE 2. In the objective function: f(X) (1 —
I2)2 + (z2 — 1‘3)2, X c [—1,1}3, z1 and x3 interact indi-
rectly with each other (Type II). However, DG classifies x1
and x3 as independent.

PRrROOF. On the one hand,

Auy f(X)]ar=ams=by = (a+3—x2)° + (22 —b1)?

(10)
—(a—x2)° —(22—b1)? = (a+6—1x2)* — (a—z2)*.
On the other hand,
vy f(X)|zy=arma=by = (a+06 —22)° + (22— ba)? (11)
—(a—x2)° —(22—b2)? = (a+6—x2)> — (a—z2)*.

315

Algorithm 1 XDG
Require: f, d, Jb, l_B, €
1: IM < zeros(d —1,d) // IM: Interaction Matrix

2: sep_var < [| //sep_var: separable variables
3: fori=1toddo

4: groups( ) ={i}
5: X1 <— lb
6: XQ < X1
7 Xo(i) « ub(z)
8 A1+ f(X1) — f(X2)
9: forj=i+1toddo
10: if IM(4,7) =0 then
11: X1(4) = (ub(y) +16(5))/2
120 %)« () + B(j))/2
13: AQ < f(Xl) — f(XQ)
14: if |A1 — Az|> e then
15: IM(i,§) « 1
16: groups(i) < groups(i) U {j}
17: end if
18: else
19: groups(i) < groups(i) U {j}
20: end if
21:  end for
22:  for p,q € groups(i) & p < g do
23: IM(p,q) + 1
24:  end for
25: end for
26: while the number of variables in groups is not d do
27:  for p,q € {1: num(groups)} & p < ¢ do
28: if groups(p) N groups(q) # 0 then
29: groups(p) < groups(p) U groups(q)
30: delete groups(q)
31: end if
32:  end for
33: end while
34: for i =1 to num(groups) do
35: if length(groups(i)) =1 then
36: sep_var < sep_var U group(i)
37: delete groups(z)
38:  end if
39: end for
40: groups < groups U {sep_var}
41: return groups
Therefore,

Aey f(X Auy (X

DG classifies 1 and x3 as independent.

(12)

)|11 a,x3=bs -

O

)|701 a,x3=b; =

Can this limitation be addressed? Definition 1 states that
under the condition (4), if a set of decision variables can be
found to link z; and x; together, z; and z; interact indirectly
with each other. Inspired by this, we propose the XDG
method (see in Algorithm 1) to address this limitation.

In Algorithm 1, the 1nputs are: f is the objective function;
d is the dimensionality; ub and [b are the upper bounds
and lower bounds of decision variables; € is the threshold to
identify direct interaction between decision variables.

There are three main stages in the XDG method. The
first stage is to identify direct interaction between decision
variables (line 3 to line 25). The second stage is to identify



Objective function:

f()?) =%+ x5 + (x5 — x4)% + (x4 — X5)?

Direct interaction learning stage:

{1} {2}, {3, x4}, (x4, %53, {5}

Indirect interaction learning stage:

{21} {2}, {x3, %4, x5}

Separable variables learning stage:

{x1, %2}, {x3, x4, %5}

Figure 2: The decomposition processes used in XDG
for a sample objective function. In the direct inter-
action learning stage there are 5 sub-components.
In the indirect interaction learning stage the number
of sub-components is reduced to 3. The separable
variable learning stage results in 2 sub-components.

indirect interaction between decision variables (line 26 to
line 33). The third stage is to group all of separable decision
variables into the same sub-component (line 34 to line 40).

The first stage begins with the algorithm identifying all
of the decision variables that interact directly with z, and
placing them in the first sub-component with x;. Note that
the pairwise decision variables in the same sub-component
are not needed to be examined again in the following proce-
dure (line 22 to line 24). For example, if 21 directly interacts
with z3 and x4, we already know z3 interacts with x4, there-
fore, they do not need to be examined again in the following
procedures. Secondly, the algorithm examines the direct in-
teraction between x> and all of the other decision variables
except x1, for x1 and x2 have been examined in the pre-
vious procedure. This process is conducted for all decision
variables and d sub-components are formed.

The technique used to identify direct interaction is the
same as in the original DG method (line 5 to line 8, line 11
to line 17). To examine direct interaction between x; and
x5, all decision variables are initialized to the lower bound of
the search space in the vector of Xl (line 5). )?2 is the same
with X except for the i, value, which is set to the upper
bound of the search space (line 6 and line 7). The algorithm
calculates the difference between the fitness values at X 1 and
)?2, denoted by A; (line 8). Then the j;p, value of X, and X,
are set to the center of the search space. And the algorithm
calculates the difference between the fitness values at X;
and X again, denoted by A (line 11 to line 13). If the
difference between A; and As is greater than the threshold
€, x; and x; are classified as direct interaction.

In the second stage, the algorithm searches for overlaps
between the d sub-components formed in the first stage. If
the same decision variable appears in two sub-components,
the algorithm merges the two sub-components (line 28 to
line 31). This process is repeated until all sub-components
are disjoint. Note that when all sub-components are disjoint,
the total number of variables in all sub-components is equal
to d. This is employed as the stopping criterion of the second
stage (line 26).

In the third stage, the algorithm counts the number of

316

decision variables in each sub-component. If it is equal to 1,
the algorithm places the decision variable into the separa-
ble variable sub-component. Note that placing all separable
variables into the same sub-component is arbitrary, which
may not be the best decomposition method. However, we
follow the approach used in DG to group separable variables
in this way. The algorithm returns all of the sub-components
as the output.

To further expand on the processing stages, consider Ex-
ample 3 and Figure 2.

ExaMmpLE 3. Take the objective function: f()?) =z +
23+ (23—24)? +(za—x5)%, X € [-1,1]° as an example. The
three stages of XDG on the objective function is illustrated
in Figure 2.

4. EXPERIMENTS

In this section, detailed numerical experiments are con-
ducted to investigate the efficacy of XDG. Two research
questions guide the experimental design:

Q1. Can the proposed XDG method address the limitation
of the DG method identified in Section 37

Q2. Can the proposed XDG method outperform the DG
method when it is embedded in a CC framework for
large scale optimization problems?

4.1 Methodology

To answer the two research questions, benchmark func-
tions from the CEC’2010 special session on large scale global
optimization [20] are used. This benchmark suite was also
used to evaluate the DG method in [12]. The suite consists
of 20 benchmark functions with 5 categories:

1. fully separable functions (f1 to f3);

2. partially separable functions with 1 non-separable sub-
component (f4 to fs);

3. partially separable functions with 10 non-separable sub-
components (fg to fi3);

4. partially separable functions with 20 non-separable sub-
components (fi4 to fis);

5. fully non-separable functions (fi9 to fa20).

The dimensionality of the 20 benchmark functions is d =
1000, and the number of decision variables in each sub-
component is 50.

To investigate Q1, our XDG method is tested on the 20
benchmark functions. The threshold e was set to 107, (If
not specified € = 107! in the rest of the paper). Other val-
ues of ¢ (1072 and 1) were used to test the sensitivity of
XDG. Two metrics were employed to evaluate the perfor-
mance of XDG: one is the number of function evaluations
used to decompose the problem; the other is the accuracy
of grouping of the interacting variables into the same sub-
component. The performance of XDG is compared with the
performance of DG. The value 1072 is selected as the thresh-
old € for DG, as suggested in [12]. If not specified, all the
parameter selections are consistent with the original paper.
Note that the parameter settings for XDG and DG are dif-
ferent. For DG, e = 102 performs better than e = 107, as



Table 1: Decomposition results of XDG and DG on the 20 large scale benchmark functions. XDG and DG

values are separated by “/”.

Extended Differential Grouping (e = 10~ ') / Differential Grouping (e = 10~ °)

Function Sep Non-sep  Non-Sep Captured Captured Formed Misplaced Function Grouping
Vars Vars Groups Sep Vars Non-sep Vars  Non-sep Groups Vars Evaluations Accuracy
f1 1000 0 0 1000/1000 0/0 0/0 0/0 1001000/1001000  100%/100%
f2 1000 0 0 1000/1000 0/0 0/0 0/0 1001000/1001000  100%/100%
f3 1000 0 0 1000/1000 0/0 0/0 0/0 1001000/1001000  100%/100%
fa 950 50 1 0/33 50/50 1/10 0/0 80526/14554 100%/100%
fs 950 50 1 950/950 50/50 1/1 0/0 998648 /905450 100%/100%
fe 950 50 1 950/950 50/50 1/1 0/0 998648,/906332 100%/100%
f7 950 50 1 950/248 50/34 1/4 0/16 998648 /67742 100%/68%
fs 950 50 1 0/134 50/45 2/5 0/5 121658/23286 100%/90%
fo 500 500 10 500/500 500/500 10/10 0/0 977480,/270802 100%/100%
f1o 500 500 10 500/500 500/500 10/10 0/0 977480,/272958 100%/100%
f11 500 500 10 500/501 500/499 10/10 0/1 978528/270640 100%/99.8%
fi2 500 500 10 500/500 500/500 10/10 0/0 977480/271390 100%/100%
fis 500 500 10 500/131 500/159 10/34 0/341 1000154/50328 100%/31.8%
fia 0 1000 20 0/0 1000/1000 20/20 0/0 953960,/21000 100%/100%
fis 0 1000 20 0/0 1000/1000 20/20 0/0 953962/21000 100%/100%
f1e 0 1000 20 0/4 1000/996 20/20 0/4 956286/21128 100%/99.6%
fir 0 1000 20 0/0 1000,/1000 20/20 0/0 953960,/21000 100%/100%
fis 0 1000 20 0/78 1000/230 20/50 0/770 999340/39624 100%/23%
fi9 0 1000 1 0/0 1000,/1000 1/1 0/0 3998,/2000 100%/100%
f20 0 1000 1 0/33 1000/287 1/241 0/713 1001000/155430 100%/28.7%

shown in [12]. This is the reason why we select 10~ instead
of 1071 as the e value for DG.

To investigate Q2, we use the DECC cooperative coevo-
lution algorithm/framework used by Omidvar et al. [12].
DECC uses SaNSDE [24] to optimize each sub-component.
The population size was set to 50. The maximal number
of function evaluations is set to 3 x 10°, divided between
the decomposition phase and the evolutionary optimization
phase. The performance of XDG was compared with DG
and delta grouping [14], where each decomposition method
was incorporated into the DECC. These three algorithms
are denoted by DECC-XDG (DECC with XDG), DECC-DG
(DECC with DG) and DECC-D (DECC with delta group-
ing). For each algorithm, 25 independent runs are conducted
for each benchmark function. The mean and standard devi-
ation of the best solutions found in the fixed number of func-
tion evaluations are recorded to evaluate the performance of
the algorithms. The two-sided Wilcoxon test with the con-
fidence interval of 95% is used to determine the best perfor-
mance from the 3 algorithms in a pairwise fashion.

4.2 Performance of XDG

In this section, we analyse the decomposition results of
XDG on 20 benchmark functions. We compare the results
from XDG with the decomposition results of DG. We also
analyse the sensitivity of XDG to the parameter e.

The decomposition results of XDG and DG on the 20
benchmark functions are presented in Table 1, which are
separated by “/”. The different categories of benchmark
functions are separated by the double lines. The first 4
columns are the details for each benchmark function, and
the last 6 columns are the results of the decomposition meth-
ods on each benchmark function. Specifically, the ninth col-
umn records the number of function evaluations used by
XDG/DG to decompose each benchmark function. The last
column records the accuracy of XDG/DG when grouping
interacting variables into the same sub-component on each
benchmark function.

Table 1 shows that XDG outperforms DG. In terms of
grouping accuracy, XDG achieves 100% accuracy on all of

317

the 20 benchmark functions. DG achieves 100% accuracy
only on 13 benchmark functions. On functions fis and fao,
the grouping accuracy of DG is very low (less than 30%).
Note that the number of function evaluations used by XDG
is equal or larger than the number used by DG. The extra
function evaluations are used to identify indirect interaction
between decision variables.

The first category of the 20 benchmark functions (See Sec-
tion 4.1) contains three fully separable functions (f1 to f3).
Both XDG and DG successfully identify all of the 1000 de-
cision variables as separable. Note that the function evalu-
ations used by XDG/DG on the three separable functions
are the same, which is 1001000/1001000.

Category 2 consists of 5 partially separable functions (f4
to fs). Each function contains one non-separable group with
50 decision variables. On function f5 fs and f7, XDG suc-
cessfully identifies all of the 50 interacting variables and 950
separable variables. On function f4, XDG identifies all of the
1000 decision variables as interacting variables. It may seem
odd that we still report the grouping accuracy as 100%. The
reason is that XDG (or DG) only focuses on grouping inter-
acting variables. As long as all of the interacting variables
are grouped into the same sub-component, the grouping ac-
curacy is 100%. This criterion is suggested in [12]. On func-
tion fs, XDG forms two non-separable groups, one with 50
interacting variables and one with 950 separable variables.
Note that XDG (or DG) automatically places all of the sep-
arable variables into the same sub-component. Therefore,
the unexpected grouping of 950 separable variables will not
affect the final decomposition result on fs. DG also achieves
perfect decomposition on f5 and fs. On f7, the number of
interacting variables identified by DG is 34 out of 50. There-
fore the grouping accuracy of DG on f7 is 68%. On fs, the
grouping accuracy of DG is 90%, with 45 out of 50 interact-
ing variables successfully identified.

Category 3 functions (fo to fi3) contain 10 non-separable
sub-components, each with 50 interacting decision variables.
The number of separable and non-separable decision vari-
ables are both 500 in each function. On all of the 5 functions,
XDG successfully identifies the 500 separable decision vari-



Table 2: Decomposition results of XDG with different values of threshold ¢ on 20 benchmark functions. The
results of ¢ = 1 and the results of ¢ = 10”7 are separated by “/”.

Extended Differential Grouping (¢ = 1)/ Extended Differential Grouping (¢ = 10~ °)

Function Sep Non-sep  Non-Sep Captured Captured Formed Misplaced Function Grouping
Vars Vars Groups Sep Vars Non-sep Vars  Non-sep Groups Vars Evaluation Accuracy
f1 1000 0 0 1000/1000 0/0 0/0 0/0 1001000/1001000  100%/100%
f2 1000 0 0 1000/1000 0/0 0/0 0/0 1001000/1001000  100%/100%
f3 1000 0 0 1000/1000 0/0 0/0 0/0 1001000/1001000  100%/100%
fa 950 50 1 0/0 50/50 1/1 0/0 80526,/80526 100%/100%
fs 950 50 1 950/950 50/50 1/1 0/0 998648,/998648 100%/100%
fe 950 50 1 950/950 50/50 1/1 0/0 998648,/998648 100%/100%
f7 950 50 1 950/0 50/50 1/1 0/0 998648 /45290 100%/100%
fs 950 50 1 0/0 50/50 2/2 0/0 121658/1216586 100%/100%
fo 500 500 10 500/500 500/500 10/10 0/0 977480,/977480 100%/100%
f1o 500 500 10 500/500 500/500 10/10 0/0 977486/ 977480 100%/100%
f11 500 500 10 1000/500 0/500 0/10 500/0 1001000/977482 0%/100%
f12 500 500 10 500/500 500/500 10/10 0/0 977480,/977480 100%/100%
fis 500 500 10 500/4 500/50 10/2 0/450 1000154/ 573776 100%/10%
fia 0 1000 20 0/0 1000/1000 20/20 0/0 953960,/953960 100%/100%
fis 0 1000 20 0/0 1000/1000 20/20 0/0 953978/ 953960 100%/100%
fie 0 1000 20 1000/0 0/1000 0/20 1000/0 1001000,/953968 0%/100%
fir 0 1000 20 0/0 1000/1000 20/20 0/0 953960/ 953960 100%/100%
fis 0 1000 20 0/0 1000/50 20/1 0/950 999340/ 171370 100%/5%
f1o 0 1000 1 0/0 1000/1000 1/1 0/0 3996,/3996 100%/100%
f20 0 1000 1 0/0 1000/1000 1/1 0/0 1001000/ 705698  100%/100%

ables and 10 non-separable groups, each with 50 interacting
variables. DG also achieves perfect decomposition on fo, fio
and fi2. On fi1, DG only misplaces 1 non-separable deci-
sion variable. On fi3, DG forms 34 non-separable groups.
The number of interacting decision variables correctly iden-
tified is 159. Note that fi3 is a Rosenbrock function, which
contains examples of indirect interaction (Type II). It also
shows that DG can not capture indirect interaction between
decision variables. For this reason, DG may break one non-
separable group into several groups. For example, in the
function: f(X) = (z1—x2)%+ (w2 —3)> + (z3 —x4)>, there is
only one non-separable group: {z1,z2,x3,z4}. However DG
will form two non-separable groups: {x1,z2} and {z3,z4}.
This is why DG forms 34 non-separable groups on fi3.

Category 4 functions (f14 to fis) contain 20 non-separable
groups, each with 50 interacting decision variables. XDG
achieves perfect decomposition on all of the 5 functions.
DG achieves 100% grouping accuracy on fis4 fi5 and fi7.
On fi6, DG unexpectedly classifies 4 interacting variables
as separable. Function fis is another function with indirect
interaction. DG forms 50 non-separable groups. The num-
ber of interacting decision variables correctly identified is
230. Therefore, the grouping accuracy of DG on fig is 23%,
which is very low. Note that the function evaluations used
by XDG on all of the 5 functions are around one million,
which is much greater than the function evaluations used by
DG (around twenty thousand).

Category 5 comnsists of two fully non-separable functions
with 1000 interacting decision variables (fio and f20). XDG
successfully assigns all of the 1000 interacting variables into
the same sub-component. DG also achieves 100% grouping
accuracy on fig9. However on fap, DG only correctly identi-
fies 287 interacting decision variables. Note that fao is also
a Rosenbrock function. The number of function evaluations
used by XDG and DG on fig9 are both small. However on
f20, the number of function evaluations used by XDG is
about 6 times greater than that used by DG.

In sum, DG achieves high grouping accuracy on most of
the benchmark functions. However, it performs poorly on
functions with indirect interaction, such as f7 fiz fis and

318

f20. XDG achieves 100% grouping accuracy on all of the
20 benchmark functions. It can successfully identify both
direct interaction and indirect interaction. Therefore, the
extension in XDG can address the limitation of the stan-
dard DG. However, XDG is more computational expensive
than DG as it requires computational resources to identify
indirect interaction between decision variables. This repre-
sents a classic trade-off between accuracy and efficiency.

The parameter € is the threshold to classify pairwise de-
cision variables as direct interaction or independent. The
larger the € is, the more likely the interacting decision vari-
ables are classified as independent. However, if the € is too
small, the independent decision variables may be classified
as interacting due to the computational errors in the system.
Table 2 presents the grouping results of XDG with € = 1 and
€ = 1072, which are separated by “/”.

According to Table 1 and Table 2, the grouping results
of XDG with € = 1 are the same with e = 10! on the 20
benchmark functions except fi1 and fig. On fi1 and fis,
XDG identifies all of the decision variables as separable vari-
ables. The reason may be that fi1 and fis are very smooth
functions. The fitness difference between two candidate so-
lutions in the search space is less than 1. Therefore, € = 1
is too large to identify interacting variables.

When e = 1073, the grouping accuracy of XDG on 18
out of 20 benchmark functions is 100%. On function fis,
two non-separable groups are formed with only 50 interact-
ing decision variables correctly identified. The reason for
this may be that the computational errors in the system is
large compared with the value of e: 1073, XDG unexpect-
edly assigns some separable decision variables into the non-
separable group. Besides, the 10 groups of non-separable
decision variables are assigned to the same group. Note that
the second stage of XDG is to learn indirect interaction. An
unexpected grouping of interacting decision variables in the
first stage may result in two non-separable groups merged
as one. It will cause a rapid deterioration of the grouping
accuracy. Similar results can be found with fis, where XDG
places all of the 20 groups of interacting decision variables



into the same group. Therefore, the grouping accuracy of
XDG on flg is 5%

In sum, the selection of € should not be too large or too
small. A large value of e will fail to identify some of the
interacting decision variables. A small value of € will result
in fault grouping of interacting decision variables. The value
107 is used for XDG in the rest of the paper.

4.3 DECC Comparison

This section analyses the experimental results of the DECC
algorithm with our proposed extended differential grouping
method, DECC-XDG, on the 20 benchmark functions. The
performance of DECC-XDG is compared with DECC-DG
and DECC-D.

On fully separable functions, DECC-D outperforms DECC-
DG and DECC-XDG significantly. The reason may be that
DG and XDG put all of the separable decision variables
into the same sub-component. When the number of separa-
ble variables is large (hundreds and thousands), it may not
be a good choice to place all of the separable variables into
the same sub-component [21, 19]. An alternative decompo-
sition approach could be to treat each separable variable as
one sub-component, however, such an approach is not ideal.
The intermediate decomposition between these two extreme
cases has been shown to be more efficient [15]. Another rea-
son may be that the number of function evaluations used
by DECC-XDG or DECC-DG in the decomposition phase
is too large, resulting in few function evaluations left for the
evolutionary optimization phase. According to Table 1, the
number of function evaluations used by DECC-XDG/DG in
the decomposition phase is 1001000, which is approximately
equal to 1/3 of the maximal number of function evaluations
(3 x 10°%). Note that the performances of DECC-XDG and
DECC-DG on the 3 separable functions are almost the same.

On fs, fis, fis and f20, DECC-XDG outperforms DECC-
DG significantly. Note that all the of four functions have in-
direct interaction between decision variables. XDG achieves
perfect decomposition on the four benchmark functions, while
the decomposition accuracy of DG is low according to Ta-
ble 1. Although the number of function evaluations used by
DECC-XDG in the decomposition phase is greater than that
of DECC-DG (See Table 1), DECC-XDG still significantly
outperforms DECC-DG on the four benchmark functions.
For fis, DECC-XDG used 25 times the number of function
evaluations used by DECC-DG in the decomposition phase.
However, the mean of the best solutions found by DECC-
XDG is 2.60e+03, while the mean of the best solutions found
by DECC-DG is 1.44e+10. The former is much better than
the latter, which demonstrates the effectiveness of the exten-
sion in XDG. It also shows that an ideal decomposition can
significantly improve the performance of a CC algorithm.

On functions without indirect interactions such as fis,
fie, fir, DECC-XDG achieves the same or slightly worse
results than DECC-DG. Note that the decomposition accu-
racy achieved by DECC-XDG and DECC-DG are both the
same on these functions. However the number of function
evaluations used by DECC-XDG in the decomposition phase
is much greater than that of DECC-DG. Therefore, the num-
ber of function evaluations left for DECC-XDG to optimize
each sub-component is much less than that of DECC-DG.

On function fz0, DECC-XDG successfully places all of
the 1000 interacting decision variables into the same sub-
component. However, the quality of the best solution found

319

Table 3: The comparison between the performances
of DECC-XDG, DECC-DG and DECC-D on the 20
benchmark functions. The significant better perfor-
mances are highlighted in bold (Wilcoxon test with

a = 0.05)
Func Num DECC-XDG DECC-DG  DECC-D
Mean 2.23e+04 1.12e+04 4.07e-24
i g 8.01e+04 3.37Te+04 1.75e-23
Mean  4.44e+03 4426103 2.82e+02
F2 g 1.64e+02 1.59e+02  2.40e+01
Mean 1.66e+01 1.67e+01 1.52e-13
fs gta 4.12e-01 3.05e-01 8.48e-15
Mean 7.84e+11 4.63e+12 4.12e+12
fr g 1.67e+11 1.35e+12  1.46e+12
Mean  1.68e+08  1.08¢+08  2.48¢+08
fs sa 1.74e+07 4.58¢+07  4.79e+07
Mean  1.63e+01  1.62e+01  5.34e+07
fo o gta 3.28¢-01 2.82¢-01 8.79e+07
Mean 1.39e+03 1.63e+04 6.89e+07
fr s 2.61e+03 8.93¢+03  4.96e+07
Mean 4.78e4-05 2.51e+07 1.09e+4-08
fs ga 1.32e+06 2.54e+07  4.87e+07
Mean  1.12e+08  5.60e+07  6.13e+07
fo gt 1.13e+07 6.59¢+06  6.28¢+06
Mean 5.31e+03 5.22e+403 1.29e+-04
fro “giq 1.55e4-02 1.28¢+02  2.27e+02
Mean 1.04e+01 9.94e+00 1.55e-13
fr Tgia 1.15e+00 9.57e-01 8.19e-15
Mean  1.24e+04  2.83e+03  4.30e+06
fz g 2.32e403 9.92e+02  1.79e+05
Mean 1.21e+03  5.35e+06 1.19e+03
fis giq 2.25e402 4.89¢+06  5.02e+02
Mean 5.83e+08 3.43e+08 1.93e+08
fa g 4.11e+07 2.23¢+07  1.06e+07
Mean 5.91e+03 5.84e+03 1.60e+04
Fis gia 7.56e+01 8.93e+01  4.24e+02
Mean 1.81e-08 7.32e-13 1.70e+01
fis giq 1.57e-09 4.62e-14 8.48¢+01
Mean 1.26e+05 3.99e+04 7.48e+06
A7 gia 7.47e403 1.80e+03  4.03e+05
Mean  1.41e+03  1.44e+10  3.32e+03
fis gd 1.88e+02 2.50e+09  7.09e+02
Mean  1.59e+06 1.72e4-06 2.32e+07
Fro Tgia 4.96e404 6.83e+06  5.56e+06
Mean 5.55e+05 6.69e+10 1.18e+03
fo g4 1.75e+06 9.24e+09  8.25¢+01

by DECC-XDG is worse than that of DECC-D. It may be
an indication that assigning all of the interacting decision
variables into the same sub-component may not be a good
decomposition method when the number of interacting vari-
ables is large.

S. CONCLUSION

In this paper, we have investigated the effects of decision
variable interaction and decomposition methods within the
cooperative co-evolution framework. We have described two
alternative types of variable interactions — direct interaction
and indirect interaction — that may appear in the decision



variable space of large scale optimization problems. Impor-
tantly, we have shown that the state-of-art decomposition
method DG can not capture indirect interaction, and this
in turn can be used to explain relatively poor performance
on some of the benchmark functions. As a result, we have
introduced an extended differential grouping method, XDG,
to address this limitation. Results from comprehensive nu-
merical simulation experiments clearly illustrated that XDG
can achieve perfect decomposition on all of the benchmark
functions investigated. When XDG was embedded within
a cooperative co-evolutionary framework, it achieves signifi-
cantly better performance than DECC-DG and DECC-D on
the benchmark functions with indirect interaction. It also
achieves comparable performance with DECC-DG on the
benchmark functions without indirect interaction.

6. ACKNOWLEDGMENT

The authors would like to thank Xiaodong Li for providing
the source code of the differential grouping method and the
DECC algorithm on the website.

7. REFERENCES

[1] W. Chen, T. Weise, Z. Yang, and K. Tang. Large-scale
global optimization using cooperative coevolution with
variable interaction learning. In Lecture Notes in
Computer Science, pages 300-309, 2010.
Y. Davidor. Epistasis variance: Suitability of a
representation to genetic algorithms. Complex
Systems, 4:369-383, 1990.
D. Goldberg, B. Korb, and K. Deb. Messy genetic
algorithms: Motivation, analysis, and first results.
Complex systems, 3:493-530, 1989.
D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning, volume
Addison-We. 1989.
D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik.
Rapid Accurate Optimization of Difficult Problems
Using Fast Messy Genetic Algorithms. Proceedings of
the Fifth International Conference on Genetic
Algorithms, (Urbana, USA), pages 56-64, 1993.
N. Hansen. Reducing the time complexity of the
derandomized evolution strategy with covariance
matrix adaptation (CMA-ES). Evolutionary
computation, 11(1):1-18, 2003.
H. Kargupta. The performance of the gene expression
messy genetic algorithm on real test functions.
Proceedings of IEEFE International Conference on
Evolutionary Computation, 1996.
Y. Liu, X. Yao, Q. Zhao, and T. Higuchi. Scaling up
fast evolutionary programming with cooperative
coevolution. Proceedings of the 2001 Congress on
Evolutionary Computation, 2, 2001.
H. Miihlenbein, J. Bendisch, and H. M. Voigt. From
recombination of genes to the estimation of
distributions II. Continuous parameters. Parallel
Problem Solving from Nature - PPSN IV. Springer
Berlin Heidelberg, pages 188-197, 1996.
M. Munetomo and D. Goldberg. A genetic algorithm
using linkage identification by nonlinearity check.
IEEE SM(C’99 Conference Proceedings. 1999 IEEE
International Conference on Systems, Man, and
Cybernetics, 1, 1999.

[7]

9

(10]

320

[11] M. Munetomo and D. E. Goldberg. Linkage
identification by non-monotonicity detection for
overlapping functions. Fvolutionary computation,
7:377-398, 1999.

M. Omidvar, X. Li, Y. Mei, and X. Yao. Cooperative
co-evolution with differential grouping for large scale
optimization. IEEE Transcations on Evolutionary
Computation, 18(3):378-393, 2014.

M. N. Omidvar, X. Li, Z. Yang, and X. Yao.
Cooperative co-evolution for large scale optimization
through more frequent random grouping. In /IEEFE
Congress on FEvolutionary Computation, 2010.

M. N. Omidvar, X. Li, and X. Yao. Cooperative
co-evolution with delta grouping for large scale
non-separable function optimization. In IEEE
Congress on Evolutionary Computation, 2010.

M. N. Omidvar, Y. Mei, and X. Li. Optimal
Decomposition of Large-Scale Separable Continuous
Functions for Cooperative Co-evolutionary
Algorithms. IEEE Congress on Evolutionary
Computation, 2014.

M. Potter and K. D. Jong. A cooperative
coevolutionary approach to function optimization.
Parallel Problem Solving from Nature - PPSN 111,
pages 249 — 257, 1994.

S. Rochet, G. Venturini, M. Slimane, and E. E.
Kharoubi. A critical and empirical study of epistasis
measures for predicting GA performances: a
summary. Artificial evolution, 1998.

D.-I. Seo and B.-R. Moon. An information-theoretic
analysis on the interactions of variables in
combinatorial optimization problems. Fvolutionary
computation, 15:169-198, 2007.

Y .-j. Shi, H.-f. Teng, and Z.-q. Li. Cooperative
Co-evolutionary Differential Evolution for Function
Optimization. In Advances in Natural Computation,
pages 1080-1088. 2005.

K. Tang, X. Ydo, and P. Suganthan. Benchmark
functions for the CEC’2010 special session and
competition on large scale global optimization.
Rapport technique, USTC, Nature Inspired
Computation and Applications Laboratory, (1):1-23,
2010.

F. VandenBergh and A. Engelbrecht. A Cooperative
Approach to Particle Swarm Optimization.
Evolutionary Computation, IEEE Transactions on,
8:225-239, 2004.

T. Weise, R. Chiong, and K. Tang. Evolutionary
Optimization: Pitfalls and Booby Traps. Journal of
Computer Science and Technology, 27(5):907-936,
Nov. 2012.

Z. Yang, K. Tang, and X. Yao. Large scale
evolutionary optimization using cooperative
coevolution. Information Sciences, 178(15):2985-2999,
Aug. 2008.

Z. Yang, K. Tang, and X. Yao. Self-adaptive
differential evolution with neighborhood search. In
2008 IEEE Congress on Evolutionary Computation,
CEC 2008, pages 1110-1116, 2008.

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

22]

23]

24]





