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Introduction: Large-Scale Continuous Optimization

Large-scale (High-dimensional) Continuous Optimization Problems are
challenging to solve:

- Search space increases exponentially.

- Problem complexity increases greatly.

- The running time of some evolutionary algorithms increases
significantly.
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Background: Cooperative Co-evolution1
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Background: Recursive Differential Grouping (RDG) 2

There exists some interaction between two subsets of decision variables X1

and X2 if
∆X1f (x)|X1=X∗
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Sun Y, Kirley M, Halgamuge S K. A recursive decomposition method for large scale continuous optimization[J]. IEEE

Transactions on Evolutionary Computation, accepted on November 2017
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Background: Parameter (Threshold) Setting for RDG

1 In theory, if λ = 0, X1 and X2 are separable; if λ > 0, X1 and X2

interact, where λ = |∆1 −∆2|.

2 In practice, if λ ≤ ε, X1 and X2 are separable; if λ > ε, X1 and X2

interact.
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Background: Parameter (Threshold) Setting for RDG

The RDG method estimates a threshold value based on the magnitude of
the objective values:

ε := α ·min
{
|f (x1)|, · · · , |f (xk)|

}
, (3)

where x1, · · · , xk are k randomly generated candidate solutions, and α is
the control coefficient 3.

Limitations:

1 Lack of theoretical foundation.

2 Non-trivial to select an appropriate value for α.

3 Insufficient to deal with problems with imbalanced components.

3
Mei Y, Omidvar M N, Li X, et al. A competitive divide-and-conquer algorithm for unconstrained large-scale black-box

optimization[J]. ACM Transactions on Mathematical Software (TOMS), 2016, 42(2): 13.
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Adaptive Threshold Estimation: Round-off Errors (S1)

The round-off errors involved in the calculation of the non-linearity term
λ =

∣∣(f (xl ,l)− f (xu,l)
)
−
(
f (xl ,m)− f (xu,m)

)∣∣ come from two sources:

S1: the arithmetic floating-point subtraction between fitness values f (x).

S2: the calculation of the fitness values f (x).

Round-off Errors (S1):

∆̂1 = f̂ (xl,l)	 f̂ (xu,l) =
(
f̂ (xl,l)− f̂ (xu,l)

)
(1 + δ1), where |δ1| < µM; 4 (4)

∆̂2 = f̂ (xl,m)	 f̂ (xu,m) =
(
f̂ (xl,m)− f̂ (xu,m)

)
(1 + δ2), where |δ2| < µM; (5)

λ̂ =
∣∣∆̂1 	 ∆̂2

∣∣ =
∣∣(∆̂1 − ∆̂2)(1 + δ3)

∣∣ =
∣∣(f̂ (xl,l)− f̂ (xu,l)

)
(1 + δ1)(1 + δ3)

−
(
f̂ (xl,m)− f̂ (xu,m)

)
(1 + δ2)(1 + δ3)

∣∣, where |δ1|, |δ2|, |δ3| < µM.

(6)

4∆̂ denotes the floating-point number of ∆; 	 denotes floating-point substraction;
µM is a machine dependent constant (µM = 2−53 in MATLAB).
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Adaptive Threshold Estimation: Round-off Errors (S1)

Theorem

Given a floating-point number system that satisfies IEEE 754 Standard
such that |δi | < µM, and kµM < 1, we have:

k∏
i=1

(1 + δi )
ei = 1 + θk , where |θk | ≤

kµM
1− kµM

:= γk and ei = ±1.a (7)

aCorless R M, Fillion N. A graduate introduction to numerical methods[J].
AMC, 2013, 10: 12, Springer.

Example: (1 + δ1)(1 + δ3) = (1 + θ2), where |θ2| ≤ γ2.

Estimating an upper bound for S1:

λ̂ =
∣∣(f̂ (xl ,l)− f̂ (xu,l)

)
(1 + θ2)−

(
f̂ (xl ,m)− f̂ (xu,m)

)
(1 + θ′2)

∣∣, (8)

where |θ2| ≤ γ2 and |θ′2| ≤ γ2.
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Adaptive Threshold Estimation: Round-off Errors (S2)

Assumption 1: The number of floating-point operations (Φ) involved in
the calculation of a black-box objective function is in the order of Θ(n),
where n is the dimensionality of the objective function5 :

Φ ≈ n. (9)

Assumption 2: The round-off error grows with the square root of the
number of floating-point operations (Φ) involved in a calculation6:

k ≈
√

Φ. (10)

Estimating an upper bound for S2:

f̂ (x) = (1 + θ√n)f (x), where
∣∣θ√n∣∣ ≤ γ√n. (11)

5Omidvar M N, Yang M, Mei Y, et al. DG2: A faster and more accurate differential
grouping for large-scale black-box optimization[J]. IEEE Transactions on Evolutionary
Computation, 2017, 21(6): 929-942.

6Higham N J. Accuracy and stability of numerical algorithms[M]. SIAM, 2002.
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Adaptive Threshold Estimation: An Upper Bound

Theorem

Under Assumption 1 and Assumption 2, an upper bound on the round-off
errors associated with the calculation of the non-linearity term λ is given by

|λ− λ̂| ≤ γ√n+2

(
|f (xl,l)|+ |f (xu,l)|+ |f (xl,m)|+ |f (xu,m)|

)
. (12)

Proof.

Substitute f̂ (x) = (1 + θ√n)f (x) into

λ̂ =
∣∣(f̂ (xl,l)− f̂ (xu,l)

)
(1 + θ2)−

(
f̂ (xl,m)− f̂ (xu,m)

)
(1 + θ′2)

∣∣. (13)

Adaptive Threshold:

ε := γ√n+2

(
|f (xl,l)|+ |f (xu,l)|+ |f (xl,m)|+ |f (xu,m)|

)
. (14)

Variables are regarded as interacting if λ̂ > ε, and separable if λ̂ ≤ ε.
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Experimental Results: Decomposition Comparison

Table: The decomposition results of the RDG2, RDG (with α = 10−12) and DG2
methods when used to decompose the CEC’2013 benchmark problems. “a”
denotes the decomposition accuracy; “FEs” denotes the function evaluations used.

Func RDG2 RDG (α = 10−12) DG2

ID a FEs a FEs a FEs

f7 100% 9.81e+03 100% 9.82e+03 83.3% 5.00e+05

f8 80.0% 1.91e+04 80.0% 1.95e+04 78.5% 5.00e+05

f10 100% 1.93e+04 82.7% 1.91e+04 100% 5.00e+05

f11 100% 1.93e+04 10.0% 1.06e+04 100% 5.00e+05
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Experimental Results: Decomposition Details (f11)
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Experimental Results: Decomposition Details (f11)
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Experimental Results: Decomposition Details (f8)
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Experimental Results: Decomposition Details (f8)
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Experimental Results: Decomposition Details (f8)
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Experimental Results: Optimization Comparison

Table: The optimization results of RDG2, RDG and DG2 when embedded into a
CC framework to solve CEC’2013 benchmark problems (Wilcoxon rank-sum tests).

Func Stats RDG2 RDG DG2

f7
median 3.12e-19 2.93e-20 1.00e+03
mean 4.04e-16 8.11e-17 1.05e+03
std 1.48e-15 2.17e-16 2.78e+02

f8
median 8.15e+06 8.26e+06 3.56e+07
mean 8.70e+06 8.50e+06 3.84e+07
std 3.61e+06 2.91e+06 1.08e+07

f10
median 9.05e+07 9.05e+07 9.05e+07
mean 9.10e+07 9.10e+07 9.13e+07
std 1.30e+06 1.29e+06 1.50e+06

f11
median 2.81e+03 1.68e+07 1.55e+05
mean 8.68e+03 1.67e+07 2.47e+05
std 1.24e+04 1.61e+06 2.36e+05
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Experimental Results: Optimization Comparison
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Figure: The convergence curves of the RDG2, RDG and DG2 methods when
embedded into the CC framework to solve the CEC’2013 f11.
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Conclusion and Future Work

1 Conclusion

- Derived an upper bound on the computational round-off errors involved
in calculating the non-linearity term for RDG.

- Showed that the upper bound was able to be used as the threshold
value to identify variable interactions across a wide range of benchmark
problems.

2 Future Work

- Systematically investigate the correlation between the non-linearity
term for interacting variables and the weight of the components.

- Generate a more effective decomposition for large-scale problems with
overlapping components.
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Thank You! & Questions?
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Back-up: Decomposition Process of RDG

Interaction Structure

x1

x2

x3

x4 x5

Decomposition Process

x1 x2, x3, x4, x5
∆1 6= ∆2

x2, x3 x4, x5x1
∆1 6= ∆2

∆1 = ∆2

x2 x3x1
∆1 6= ∆2

∆1 = ∆2
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Back-up: Time Complexity of RDG

Time Complexity: O
(
n log(n)

)
1 Fully separable problem: 3n ∈ Θ(n).

2 Fully non-separable problem: 6n ∈ Θ(n).

3 Partially separable problem: 6n log2(n) ∈ Θ
(
n log(n)

)
.

4 Overlapping problem 6n log2(n) ∈ Θ
(
n log(n)

)
.
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