Adaptive Threshold Parameter Estimation with Recursive Differential Grouping for Problem Decomposition

Yuan Sun^{1,3} Mohammad Nabi Omidvar ² Michael Kirley ¹ Xiaodong Li ³

¹School of Computing and Information Systems, University of Melbourne

²School of Computer Science, University of Birmingham

³School of Science, RMIT University

yuan.sun@unimelb.edu.au yuan.sun@rmit.edu.au

July 17, 2018

Overview

- Introduction
- 2 Background and Related Work
- 3 Adaptive Threshold Estimation for Recursive Differential Grouping
- 4 Experimental Results
- Conclusion

Introduction: Large-Scale Continuous Optimization

Large-scale (High-dimensional) Continuous Optimization Problems are challenging to solve:

- Search space increases exponentially.
- Problem complexity increases greatly.
- The running time of some evolutionary algorithms increases significantly.

¹Potter M A, De Jong K A. A cooperative coevolutionary approach to function optimization[C]//International Conference on Parallel Problem Solving from Nature. Springer, Berlin, Heidelberg, 1994: 249-257.

¹Potter M A, De Jong K A. A cooperative coevolutionary approach to function optimization[C]//International Conference on Parallel Problem Solving from Nature. Springer, Berlin, Heidelberg, 1994: 249-257.

¹Potter M A, De Jong K A. A cooperative coevolutionary approach to function optimization[C]//International Conference on Parallel Problem Solving from Nature. Springer, Berlin, Heidelberg, 1994: 249-257.

¹Potter M A, De Jong K A. A cooperative coevolutionary approach to function optimization[C]//International Conference on Parallel Problem Solving from Nature. Springer, Berlin, Heidelberg, 1994: 249-257.

¹Potter M A, De Jong K A. A cooperative coevolutionary approach to function optimization[C]//International Conference on Parallel Problem Solving from Nature. Springer, Berlin, Heidelberg, 1994: 249-257.

¹Potter M A, De Jong K A. A cooperative coevolutionary approach to function optimization[C]//International Conference on Parallel Problem Solving from Nature. Springer, Berlin, Heidelberg, 1994: 249-257.

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^1} \neq \Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^2}, \tag{1}$$

$$\Delta_{X_1} f(\mathbf{x}) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots). \tag{2}$$

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^1} \neq \Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^2}, \tag{1}$$

$$\Delta_{X_1} f(\mathbf{x}) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots). \tag{2}$$

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^1} \neq \Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^2}, \tag{1}$$

$$\Delta_{X_1} f(\mathbf{x}) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots). \tag{2}$$

²Sun Y, Kirley M, Halgamuge S K. A recursive decomposition method for large scale continuous optimization[J]. IEEE Transactions on Evolutionary Computation, accepted on November 2017 □ ▶ ← ⑤ ▶ ← 意 ▶ ← 意 ▶ ● 意 ◆

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^1} \neq \Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^2}, \tag{1}$$

$$\Delta_{X_1} f(\mathbf{x}) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots). \tag{2}$$

²Sun Y, Kirley M, Halgamuge S K. A recursive decomposition method for large scale continuous optimization[J]. IEEE Transactions on Evolutionary Computation, accepted on November 2017

□ ▶ ← □ ▶

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^1} \neq \Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^2}, \tag{1}$$

$$\Delta_{X_1} f(\mathbf{x}) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots). \tag{2}$$

²Sun Y, Kirley M, Halgamuge S K. A recursive decomposition method for large scale continuous optimization[J]. IEEE Transactions on Evolutionary Computation, accepted on November 2017

□ ▶ ← □ ▶

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^1} \neq \Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^2}, \tag{1}$$

$$\Delta_{X_1} f(\mathbf{x}) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots). \tag{2}$$

²Sun Y, Kirley M, Halgamuge S K. A recursive decomposition method for large scale continuous optimization[J]. IEEE Transactions on Evolutionary Computation, accepted on November 2017

□ ▶ ← □ ▶

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^1} \neq \Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^2}, \tag{1}$$

$$\Delta_{X_1} f(\mathbf{x}) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots). \tag{2}$$

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^1} \neq \Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^2}, \tag{1}$$

$$\Delta_{X_1} f(\mathbf{x}) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots). \tag{2}$$

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^1} \neq \Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^2}, \tag{1}$$

$$\Delta_{X_1} f(\mathbf{x}) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots). \tag{2}$$

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^1} \neq \Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^2}, \tag{1}$$

$$\Delta_{X_1} f(\mathbf{x}) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots). \tag{2}$$

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^1} \neq \Delta_{X_1} f(\mathbf{x})|_{X_1 = X_1^*, X_2 = X_2^2}, \tag{1}$$

$$\Delta_{X_1} f(\mathbf{x}) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots). \tag{2}$$

²Sun Y, Kirley M, Halgamuge S K. A recursive decomposition method for large scale continuous optimization[J]. IEEE Transactions on Evolutionary Computation, accepted on November 2017

1 In theory, if $\lambda=0$, X_1 and X_2 are separable; if $\lambda>0$, X_1 and X_2 interact, where $\lambda=|\Delta_1-\Delta_2|$.

- In theory, if $\lambda=0$, X_1 and X_2 are separable; if $\lambda>0$, X_1 and X_2 interact, where $\lambda=|\Delta_1-\Delta_2|$.
- In practice,

- In theory, if $\lambda=0$, X_1 and X_2 are separable; if $\lambda>0$, X_1 and X_2 interact, where $\lambda=|\Delta_1-\Delta_2|$.
- In practice,

- **1** In theory, if $\lambda=0$, X_1 and X_2 are separable; if $\lambda>0$, X_1 and X_2 interact, where $\lambda=|\Delta_1-\Delta_2|$.
- In practice,

- In theory, if $\lambda=0$, X_1 and X_2 are separable; if $\lambda>0$, X_1 and X_2 interact, where $\lambda=|\Delta_1-\Delta_2|$.
- In practice,

- In theory, if $\lambda=0$, X_1 and X_2 are separable; if $\lambda>0$, X_1 and X_2 interact, where $\lambda=|\Delta_1-\Delta_2|$.
- In practice,

- In theory, if $\lambda=0$, X_1 and X_2 are separable; if $\lambda>0$, X_1 and X_2 interact, where $\lambda=|\Delta_1-\Delta_2|$.
- In practice,

- In theory, if $\lambda=0$, X_1 and X_2 are separable; if $\lambda>0$, X_1 and X_2 interact, where $\lambda=|\Delta_1-\Delta_2|$.
- ② In practice, if $\lambda \leq \epsilon$, X_1 and X_2 are separable; if $\lambda > \epsilon$, X_1 and X_2 interact.

The RDG method estimates a threshold value based on the magnitude of the objective values:

$$\epsilon := \alpha \cdot \min \{ |f(\mathbf{x}_1)|, \cdots, |f(\mathbf{x}_k)| \}, \tag{3}$$

where $\mathbf{x}_1, \dots, \mathbf{x}_k$ are k randomly generated candidate solutions, and α is the control coefficient ³.

³ Mei Y, Omidvar M N, Li X, et al. A competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimization[J]. ACM Transactions on Mathematical Software (TOMS), 2016, 42(2): 13. 4 (3) 4 (3) 4 (3) 4 (3) 4 (3) 5 (4)

The RDG method estimates a threshold value based on the magnitude of the objective values:

$$\epsilon := \alpha \cdot \min \{ |f(\mathbf{x}_1)|, \cdots, |f(\mathbf{x}_k)| \}, \tag{3}$$

where $\mathbf{x}_1, \dots, \mathbf{x}_k$ are k randomly generated candidate solutions, and α is the control coefficient ³.

Limitations:

Lack of theoretical foundation.

The RDG method estimates a threshold value based on the magnitude of the objective values:

$$\epsilon := \alpha \cdot \min \{ |f(\mathbf{x}_1)|, \cdots, |f(\mathbf{x}_k)| \}, \tag{3}$$

where $\mathbf{x}_1, \dots, \mathbf{x}_k$ are k randomly generated candidate solutions, and α is the control coefficient ³.

Limitations:

- Lack of theoretical foundation.
- **②** Non-trivial to select an appropriate value for α .

³Mei Y, Omidvar M N, Li X, et al. A competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimization[J]. ACM Transactions on Mathematical Software (TOMS), 2016, 42(2): 13.

The RDG method estimates a threshold value based on the magnitude of the objective values:

$$\epsilon := \alpha \cdot \min \{ |f(\mathbf{x}_1)|, \cdots, |f(\mathbf{x}_k)| \}, \tag{3}$$

where $\mathbf{x}_1, \dots, \mathbf{x}_k$ are k randomly generated candidate solutions, and α is the control coefficient ³.

Limitations:

- Lack of theoretical foundation.
- **②** Non-trivial to select an appropriate value for α .
- Insufficient to deal with problems with imbalanced components.

³Mei Y, Omidvar M N, Li X, et al. A competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimization[J]. ACM Transactions on Mathematical Software (TOMS), 2016, 42(2): 13.

The round-off errors involved in the calculation of the non-linearity term $\lambda = |(f(\mathbf{x}_{l,l}) - f(\mathbf{x}_{u,l})) - (f(\mathbf{x}_{l,m}) - f(\mathbf{x}_{u,m}))|$ come from two sources:

 $^{^4\}hat{\Delta}$ denotes the floating-point number of Δ ; \ominus denotes floating-point substraction; $\mu_{\rm M}$ is a machine dependent constant ($\mu_{\rm M}=2^{-53}$ in MATLAB).

The round-off errors involved in the calculation of the non-linearity term $\lambda = |(f(\mathbf{x}_{l,l}) - f(\mathbf{x}_{u,l})) - (f(\mathbf{x}_{l,m}) - f(\mathbf{x}_{u,m}))|$ come from two sources: S1: the arithmetic floating-point subtraction between fitness values $f(\mathbf{x})$.

Yuan Sun (University of Melborne)

 $^{^4\}hat{\Delta}$ denotes the floating-point number of $\Delta;$ \ominus denotes floating-point substraction; $\mu_{\rm M}$ is a machine dependent constant ($\mu_{\rm M}=2^{-53}$ in MATLAB). \rightarrow

The round-off errors involved in the calculation of the non-linearity term $\lambda = |(f(\mathbf{x}_{l,l}) - f(\mathbf{x}_{u,l})) - (f(\mathbf{x}_{l,m}) - f(\mathbf{x}_{u,m}))|$ come from two sources:

- S1: the arithmetic floating-point subtraction between fitness values $f(\mathbf{x})$.
- S2: the calculation of the fitness values $f(\mathbf{x})$.

Adaptive Threshold Estimation with RDG Yuan Sun (University of Melborne)

 $^{^4\}hat{\Delta}$ denotes the floating-point number of $\Delta;$ \ominus denotes floating-point substraction; $\mu_{\rm M}$ is a machine dependent constant ($\mu_{\rm M}=2^{-53}$ in MATLAB). $\beta > 4 \gg 4 \gg 4 \gg 4 \gg 4 \approx 10^{-53}$

The round-off errors involved in the calculation of the non-linearity term $\lambda = |(f(\mathbf{x}_{l,l}) - f(\mathbf{x}_{u,l})) - (f(\mathbf{x}_{l,m}) - f(\mathbf{x}_{u,m}))|$ come from two sources:

S1: the arithmetic floating-point subtraction between fitness values $f(\mathbf{x})$.

S2: the calculation of the fitness values $f(\mathbf{x})$.

Round-off Errors (S1):

$$\hat{\Delta}_1 = \hat{f}(\mathbf{x}_{l,l}) \ominus \hat{f}(\mathbf{x}_{u,l}) = (\hat{f}(\mathbf{x}_{l,l}) - \hat{f}(\mathbf{x}_{u,l}))(1 + \delta_1), \text{ where } |\delta_1| < \mu_{\mathrm{M}};^4$$
 (4)

8 / 23

Yuan Sun (University of Melborne) Adaptive Threshold Estimation with RDG July 17, 2018

 $^{^4\}hat{\Delta}$ denotes the floating-point number of Δ ; \ominus denotes floating-point substraction; $\mu_{\rm M}$ is a machine dependent constant ($\mu_{\rm M}=2^{-53}$ in MATLAB).

The round-off errors involved in the calculation of the non-linearity term $\lambda = |(f(\mathbf{x}_{I,I}) - f(\mathbf{x}_{u,I})) - (f(\mathbf{x}_{I,m}) - f(\mathbf{x}_{u,m}))|$ come from two sources:

S1: the arithmetic floating-point subtraction between fitness values $f(\mathbf{x})$.

S2: the calculation of the fitness values $f(\mathbf{x})$.

Round-off Errors (S1):

$$\hat{\Delta}_1 = \hat{f}(\mathbf{x}_{l,l}) \ominus \hat{f}(\mathbf{x}_{u,l}) = \left(\hat{f}(\mathbf{x}_{l,l}) - \hat{f}(\mathbf{x}_{u,l})\right)(1 + \delta_1), \text{ where } |\delta_1| < \mu_{\mathrm{M}}; {}^4 \qquad (4)$$

$$\hat{\Delta}_2 = \hat{f}(\mathbf{x}_{l,m}) \ominus \hat{f}(\mathbf{x}_{u,m}) = (\hat{f}(\mathbf{x}_{l,m}) - \hat{f}(\mathbf{x}_{u,m}))(1 + \delta_2), \text{ where } |\delta_2| < \mu_{\mathrm{M}}; \quad (5)$$

Yuan Sun (University of Melborne) Adaptive Threshold Estimation with RDG July 17, 2018 8 / 23

 $^{^4\}hat{\Delta}$ denotes the floating-point number of Δ ; \ominus denotes floating-point substraction; $\mu_{\rm M}$ is a machine dependent constant ($\mu_{\rm M}=2^{-53}$ in MATLAB). \Box

The round-off errors involved in the calculation of the non-linearity term $\lambda = |(f(\mathbf{x}_{l,l}) - f(\mathbf{x}_{u,l})) - (f(\mathbf{x}_{l,m}) - f(\mathbf{x}_{u,m}))|$ come from two sources:

S1: the arithmetic floating-point subtraction between fitness values $f(\mathbf{x})$.

S2: the calculation of the fitness values $f(\mathbf{x})$.

Round-off Errors (S1):

$$\hat{\Delta}_1 = \hat{f}(\mathbf{x}_{l,l}) \ominus \hat{f}(\mathbf{x}_{u,l}) = (\hat{f}(\mathbf{x}_{l,l}) - \hat{f}(\mathbf{x}_{u,l}))(1 + \delta_1), \text{ where } |\delta_1| < \mu_{\mathrm{M}}; {}^4 \qquad (4)$$

$$\hat{\Delta}_2 = \hat{f}(\mathbf{x}_{l,m}) \ominus \hat{f}(\mathbf{x}_{u,m}) = (\hat{f}(\mathbf{x}_{l,m}) - \hat{f}(\mathbf{x}_{u,m}))(1 + \delta_2), \text{ where } |\delta_2| < \mu_{\mathrm{M}}; \quad (5)$$

$$\hat{\lambda} = |\hat{\Delta}_1 \ominus \hat{\Delta}_2| = |(\hat{\Delta}_1 - \hat{\Delta}_2)(1 + \delta_3)| = |(\hat{f}(\mathbf{x}_{I,I}) - \hat{f}(\mathbf{x}_{u,I}))(1 + \delta_1)(1 + \delta_3) - (\hat{f}(\mathbf{x}_{I,m}) - \hat{f}(\mathbf{x}_{u,m}))(1 + \delta_2)(1 + \delta_3)|, \text{ where } |\delta_1|, |\delta_2|, |\delta_3| < \mu_{\mathrm{M}}.$$
(6)

Yuan Sun (University of Melborne)

 $^{^4\}hat{\Delta}$ denotes the floating-point number of Δ ; \ominus denotes floating-point substraction; $\mu_{\rm M}$ is a machine dependent constant ($\mu_{\rm M}=2^{-53}$ in MATLAB).

Theorem

Given a floating-point number system that satisfies IEEE 754 Standard such that $|\delta_i| < \mu_{\rm M}$, and $k\mu_{\rm M} < 1$, we have:

$$\prod_{i=1}^k (1+\delta_i)^{e_i} = 1+\theta_k, \text{ where } |\theta_k| \le \frac{k\mu_{\mathrm{M}}}{1-k\mu_{\mathrm{M}}} := \gamma_k \text{ and } e_i = \pm 1.^a \quad (7)$$

^aCorless R M, Fillion N. A graduate introduction to numerical methods[J]. AMC, 2013, 10: 12, Springer.

Example:
$$(1 + \delta_1)(1 + \delta_3) = (1 + \theta_2)$$
, where $|\theta_2| \le \gamma_2$.

Theorem

Given a floating-point number system that satisfies IEEE 754 Standard such that $|\delta_i| < \mu_{\rm M}$, and $k\mu_{\rm M} < 1$, we have:

$$\prod_{i=1}^{k} (1+\delta_i)^{e_i} = 1 + \theta_k, \text{ where } |\theta_k| \le \frac{k\mu_{\rm M}}{1-k\mu_{\rm M}} := \gamma_k \text{ and } e_i = \pm 1.^a \quad (7)$$

^aCorless R M, Fillion N. A graduate introduction to numerical methods[J]. AMC, 2013, 10: 12, Springer.

Example:
$$(1 + \delta_1)(1 + \delta_3) = (1 + \theta_2)$$
, where $|\theta_2| \le \gamma_2$.

Estimating an upper bound for S1:

$$\hat{\lambda} = |(\hat{f}(\mathbf{x}_{l,l}) - \hat{f}(\mathbf{x}_{u,l}))(1 + \theta_2) - (\hat{f}(\mathbf{x}_{l,m}) - \hat{f}(\mathbf{x}_{u,m}))(1 + \theta_2')|, \quad (8)$$

where $|\theta_2| \leq \gamma_2$ and $|\theta_2'| \leq \gamma_2$.

◆ロト ◆個ト ◆注 > ◆注 > 注 の Q @

Assumption 1: The number of floating-point operations (Φ) involved in the calculation of a black-box objective function is in the order of $\Theta(n)$, where n is the dimensionality of the objective function⁵:

$$\Phi \approx n.$$
 (9)

⁵Omidvar M N, Yang M, Mei Y, et al. DG2: A faster and more accurate differential grouping for large-scale black-box optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(6): 929-942.

⁶Higham N J. Accuracy and stability of numerical algorithms[M]. SIAM, 2002. ≥ → ○ ○

Assumption 1: The number of floating-point operations (Φ) involved in the calculation of a black-box objective function is in the order of $\Theta(n)$, where n is the dimensionality of the objective function⁵:

$$\Phi \approx n.$$
 (9)

Assumption 2: The round-off error grows with the square root of the number of floating-point operations (Φ) involved in a calculation⁶:

$$k \approx \sqrt{\Phi}$$
. (10)

⁶Higham N J. Accuracy and stability of numerical algorithms[M]. SIAM, 2002. ≥ ∞ 9 0

⁵Omidvar M N, Yang M, Mei Y, et al. DG2: A faster and more accurate differential grouping for large-scale black-box optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(6): 929-942.

Assumption 1: The number of floating-point operations (Φ) involved in the calculation of a black-box objective function is in the order of $\Theta(n)$, where n is the dimensionality of the objective function⁵:

$$\Phi \approx n.$$
 (9)

Assumption 2: The round-off error grows with the square root of the number of floating-point operations (Φ) involved in a calculation⁶:

$$k \approx \sqrt{\Phi}$$
. (10)

Estimating an upper bound for S2:

$$\hat{f}(\mathbf{x}) = (1 + \theta_{\sqrt{n}}) f(\mathbf{x}), \text{ where } \left| \theta_{\sqrt{n}} \right| \le \gamma_{\sqrt{n}}.$$
 (11)

⁶Higham N J. Accuracy and stability of numerical algorithms[M]. SIAM, 2002.

⁵Omidvar M N, Yang M, Mei Y, et al. DG2: A faster and more accurate differential grouping for large-scale black-box optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(6): 929-942.

Adaptive Threshold Estimation: An Upper Bound

Theorem

Under Assumption 1 and Assumption 2, an upper bound on the round-off errors associated with the calculation of the non-linearity term λ is given by

$$|\lambda - \hat{\lambda}| \le \gamma_{\sqrt{n}+2} \left(|f(\mathbf{x}_{l,l})| + |f(\mathbf{x}_{u,l})| + |f(\mathbf{x}_{l,m})| + |f(\mathbf{x}_{u,m})| \right). \tag{12}$$

Adaptive Threshold Estimation: An Upper Bound

Theorem

Under Assumption 1 and Assumption 2, an upper bound on the round-off errors associated with the calculation of the non-linearity term λ is given by

$$|\lambda - \hat{\lambda}| \le \gamma_{\sqrt{n}+2} \left(|f(\mathbf{x}_{l,l})| + |f(\mathbf{x}_{u,l})| + |f(\mathbf{x}_{l,m})| + |f(\mathbf{x}_{u,m})| \right). \tag{12}$$

Proof.

Substitute $\hat{f}(\mathbf{x}) = (1 + \theta_{\sqrt{n}})f(\mathbf{x})$ into

$$\hat{\lambda} = \left| \left(\hat{f}(\mathbf{x}_{l,l}) - \hat{f}(\mathbf{x}_{u,l}) \right) (1 + \theta_2) - \left(\hat{f}(\mathbf{x}_{l,m}) - \hat{f}(\mathbf{x}_{u,m}) \right) (1 + \theta_2') \right|. \tag{13}$$

Adaptive Threshold Estimation: An Upper Bound

Theorem

Under Assumption 1 and Assumption 2, an upper bound on the round-off errors associated with the calculation of the non-linearity term λ is given by

$$|\lambda - \hat{\lambda}| \le \gamma_{\sqrt{n}+2} \left(|f(\mathbf{x}_{l,l})| + |f(\mathbf{x}_{u,l})| + |f(\mathbf{x}_{l,m})| + |f(\mathbf{x}_{u,m})| \right). \tag{12}$$

Proof.

Substitute $\hat{f}(\mathbf{x}) = (1 + \theta_{\sqrt{n}})f(\mathbf{x})$ into

$$\hat{\lambda} = \left| \left(\hat{f}(\mathbf{x}_{l,l}) - \hat{f}(\mathbf{x}_{u,l}) \right) (1 + \theta_2) - \left(\hat{f}(\mathbf{x}_{l,m}) - \hat{f}(\mathbf{x}_{u,m}) \right) (1 + \theta_2') \right|. \tag{13}$$

Adaptive Threshold:

$$\epsilon := \gamma_{\sqrt{n}+2} \big(|f(\mathbf{x}_{l,l})| + |f(\mathbf{x}_{u,l})| + |f(\mathbf{x}_{l,m})| + |f(\mathbf{x}_{u,m})| \big). \tag{14}$$

Variables are regarded as interacting if $\hat{\lambda} > \epsilon$, and separable if $\hat{\lambda} \le \epsilon$.

Experimental Results: Decomposition Comparison

Table: The decomposition results of the RDG2, RDG (with $\alpha=10^{-12}$) and DG2 methods when used to decompose the CEC'2013 benchmark problems. "a" denotes the decomposition accuracy; "FEs" denotes the function evaluations used.

Func	R	RDG2		RDG ($lpha=10^{-12}$)		DG2	
ID	а	FEs	a	FEs	а	FEs	
f_7	100%	9.81e+03	100%	9.82e+03	83.3%	5.00e+05	
f_8	80.0%	1.91e+04	80.0%	1.95e+04	78.5%	5.00e+05	
f_{10}	100%	1.93e+04	82.7%	1.91e+04	100%	5.00e+05	
f_{11}	100%	1.93e+04	10.0%	1.06e+04	100%	5.00e+05	

Experimental Results: Optimization Comparison

Table: The optimization results of RDG2, RDG and DG2 when embedded into a CC framework to solve CEC'2013 benchmark problems (Wilcoxon rank-sum tests).

Func	Stats	RDG2	RDG	DG2
f_7	median	3.12e-19	2.93e-20	1.00e+03
	mean	4.04e-16	8.11e-17	1.05e+03
	std	1.48e-15	2.17e-16	2.78e+02
f_8	median	8.15e+06	8.26e+06	3.56e+07
	mean	8.70e+06	8.50e+06	3.84e+07
	std	3.61e+06	2.91e+06	1.08e+07
f_{10}	median	9.05e+07	9.05e+07	9.05e+07
	mean	9.10e+07	9.10e+07	9.13e+07
	std	1.30e+06	1.29e+06	1.50e+06
f_{11}	median	2.81e+03	1.68e+07	1.55e+05
	mean	8.68e+03	1.67e+07	2.47e+05
	std	1.24e+04	1.61e+06	2.36e+05

Experimental Results: Optimization Comparison

Figure: The convergence curves of the RDG2, RDG and DG2 methods when embedded into the CC framework to solve the CEC'2013 f_{11} .

Conclusion

- Derived an upper bound on the computational round-off errors involved in calculating the non-linearity term for RDG.

Conclusion

- Derived an upper bound on the computational round-off errors involved in calculating the non-linearity term for RDG.
- Showed that the upper bound was able to be used as the threshold value to identify variable interactions across a wide range of benchmark problems.

Conclusion

- Derived an upper bound on the computational round-off errors involved in calculating the non-linearity term for RDG.
- Showed that the upper bound was able to be used as the threshold value to identify variable interactions across a wide range of benchmark problems.

2 Future Work

- Systematically investigate the correlation between the non-linearity term for interacting variables and the weight of the components.

Conclusion

- Derived an upper bound on the computational round-off errors involved in calculating the non-linearity term for RDG.
- Showed that the upper bound was able to be used as the threshold value to identify variable interactions across a wide range of benchmark problems.

2 Future Work

- Systematically investigate the correlation between the non-linearity term for interacting variables and the weight of the components.
- Generate a more effective decomposition for large-scale problems with overlapping components.

Thank You! & Questions?

Interaction Structure

Interaction Structure

Interaction Structure

Interaction Structure

Interaction Structure

Interaction Structure

Interaction Structure

Interaction Structure

Interaction Structure

Interaction Structure

Interaction Structure

Interaction Structure

Interaction Structure

Interaction Structure

Interaction Structure

Interaction Structure

Interaction Structure

Interaction Structure

Interaction Structure

Back-up: Time Complexity of RDG

Time Complexity: $\mathcal{O}(n \log(n))$

- Fully separable problem: $3n \in \Theta(n)$.
- ② Fully non-separable problem: $6n \in \Theta(n)$.
- **9** Partially separable problem: $6n \log_2(n) \in \Theta(n \log(n))$.
- Overlapping problem $6n \log_2(n) \in \Theta(n \log(n))$.