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ABSTRACT
Problem decomposition plays an essential role in the success of

cooperative co-evolution (CC), when used for solving large-scale

optimization problems. The recently proposed recursive differen-
tial grouping (RDG) method has been shown to be very efficient,

especially in terms of time complexity. However, it requires an ap-

propriate parameter setting to estimate a threshold value in order

to determine if two subsets of decision variables interact or not.

Furthermore, using one global threshold value may be insufficient

to identify variable interactions in components with different con-

tribution to the fitness value. Inspired by the different grouping 2
(DG2) method, in this paper, we adaptively estimates a threshold

value based on computational round-off errors for RDG. We de-

rive an upper bound of the round-off errors, which is shown to

be sufficient when identifying variable interactions across a wide

range of large-scale benchmark problems. Comprehensive numeri-

cal experimental results showed that the proposed RDG2 method

achieved higher decomposition accuracy than RDG and DG2.When

embedded into a CC framework, it achieved statistically equal or

significantly better solution quality than RDG and DG2, when used

to solve the benchmark problems.

CCS CONCEPTS
• Theory of computation → Non-parametric optimization;
Divide and conquer;

KEYWORDS
Large-scale continuous optimization, cooperative co-evolution, prob-

lem decomposition, parameter adaptation, round-off error analysis
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1 INTRODUCTION
The cooperative co-evolution (CC) [15] framework has been applied

with some success when scaling up evolutionary algorithms to solve

high-dimensional (large-scale) optimization problems [10, 12, 16].

It divides a large-scale optimization problem into a number of

low-dimensional components that are solved cooperatively. The

main challenge when using the CC framework lies in problem

decomposition, which is the process of identifying and grouping

interacting decision variables into respective components [2, 9, 12].

A good decomposition should reflect the underlying interaction

structure of the decision variables [12, 14, 20].

The recently proposed recursive differential grouping (RDG) [20]

method achieves high computational efficiency by recursively ex-

amining the interaction between two subsets of decision variables

(instead of two variables commonly used in most decomposition

algorithms). The number of function evaluations (FEs) used by RDG

to decompose an n-dimensional problem has been shown to be less

than 6n log(n). The RDG method approximates a global threshold

value based on the magnitude of the objective value, which is then

used to identify variable interactions in a given problem. RDG re-

quires users to specify an appropriate parameter value to estimate

the threshold, however this parameter is highly dependent on the

structural property of the problem. Further, using only one thresh-

old value may be insufficient to completely identify variable inter-

actions in a given problem with imbalanced components [8, 14].

In this paper, we introduce an adaptive threshold value esti-

mation mechanism for RDG, which is inspired by the differential

grouping 2 (DG2) [12] method. We derive an upper bound for the

computational round-off error incurred by the floating-point op-

erations, which is then used as the threshold value to differentiate

between the separable and non-separable decision variables. The

threshold value is estimated adaptively without the need for pa-

rameter setting. For any two subsets of the decision variables, a

889

https://doi.org/10.1145/3205455.3205483
https://doi.org/10.1145/3205455.3205483


GECCO ’18, July 15–19, 2018, Kyoto, Japan Yuan Sun, Mohammad Nabi Omidvar, Michael Kirley, and Xiaodong Li

different threshold value is estimated to identify the interaction

between the two subsets.

We evaluated the proposed RDG2 method (RDG with parameter

adaptation) using the CEC’2010 [22] and CEC’2013 [8] large-scale

global optimization benchmark problems. Comprehensive numeri-

cal experiments confirmed the effectiveness of RDG2: 1) the decom-

position accuracy generated by RDG2 was equal to or higher than

that generated by both DG2 and RDG; and 2) when embedded into

a CC framework to solve the benchmark problems, RDG2 achieved

statistically similar or significantly better solutions than the other

two decomposition methods.

The remainder of this paper is organized as follows. In Section

2, we briefly review the existing decomposition methods in the

literature. In Section 3, the threshold value adaptation mechanism

for RDG2 is described in detail. Section 4 describes the experimental

methodology to evaluate the proposed RDG2 method, and analyzes

the experimental results. The final section concludes the paper and

suggests possible future research directions.

2 RELATEDWORK
The existing decomposition methods can be classified into two

different approaches: the blind decomposition method (e.g., uni-

variable grouping [15], Sk grouping [24] and random grouping [25])

does not take the underlying structure of variable interactions into

consideration. The formal definition of pairwise variable interaction

is described as follows.

Definition 2.1. (Sun et al. [20, 21]) Let f : Rn → ¯R be a differen-

tiable function. Decision variables xi and x j interact if a candidate
solution x∗ exists, such that

∂2 f (x∗)
∂xi∂x j

, 0, (1)

which is denoted by xi ↔ x j . Decision variables xi and x j condi-
tionally interact if for any candidate solution x∗,

∂2 f (x∗)
∂xi∂x j

= 0, (2)

and a set of decision variables {xk1
, . . . ,xkt } ⊂ X exists, such that

xi ↔ xk1
↔ . . . ↔ xkt ↔ x j , where k1, · · · ,kt are t decision

variable indices. Decision variables xi and x j are independent if
for any candidate solution x∗, Eq. (2) holds and a set of decision

variables {xk1
, . . . ,xkt } ⊂ X does not exist, such that xi ↔ xk1

↔

. . .↔ xkt ↔ x j .
1

In the second method, intelligent decomposition, the structure of
components is determined by the identified variable interactions

[3, 12, 14, 20]. Take a 6-dimensional problem as an example, where

x3 interacts with x2 and x4, and x5 interacts with x6. The prob-

lem can be decomposed into three components {x1}, {x2,x3,x4},

{x5,x6}, as shown in Figure 1. Therefore, it is of vital importance for

an intelligent decomposition method to accurately and efficiently

identify variable interactions.
2

1
In the following, variable interaction refers to the “interaction” (instead of “conditional

interaction”) between decision variables.

2
The terminologies “blind decomposition” and “intelligent decomposition” are sug-

gested by Xiaodong Li, which are more appropriate than “manual decomposition” and

“automatic decomposition” we used in [20].
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Figure 1: The variable interaction structure and intelligent
decomposition. The notation xi ↔ x j denotes that decision
variable xi interacts with x j .
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Figure 2: The rationale behind the non-linearity detec-
tion method when identifying (a) separable and (b) non-
separable decision variables. In the separable contour plot
(a), the fitness change induced by adding a perturbation δ to
the decision variable xi is the same for different values of x j .
However in the non-separable contour plot (b), the fitness
change induced by perturbing xi varies for different values
of x j .

The non-linearity detection [12, 23] method identifies variable

interactions by detecting the fitness changes when perturbing the

decision variables. If the fitness change induced by perturbing deci-

sion variable xi varies for different values of x j , then one concludes

that xi and x j interact. The rationale behind the non-linearity de-

tection method is shown in Theorem 2.2 and Figure 2.

Theorem 2.2. (Omidvar et al. [12]) Let f : Rn → ¯R be an objective
function. Decision variable xi interacts with x j , if there exist real
numbers a, b1, b2 and δ , 0 such that

∆δ,xi [f ](x)|xi=a,x j=b1
, ∆δ,xi [f ](x)|xi=a,x j=b2

, (3)

where

∆δ,xi [f ](x) = f (· · · ,xi + δ , · · · ) − f (· · · ,xi , · · · ). (4)

A number of decomposition methods have been proposed based

on non-linearity detection, e.g., differential grouping [12], extended

differential grouping [19], global differential grouping [11], and

DG2 [14]. These methods typically check for interactions between

pairs of decision variables, requiring O(n2) FEs to decompose an n-
dimensional problem. The fast interdependency identification (FII)

[7] method improves the decomposition efficiency by identifying
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the interaction between one decision variable with the remain-

ing decision variables. However, the number of FEs used by FII is

still in O(n2) when decomposing overlapping problems (e.g., the

Rosenbrock function [8]).

The recently proposed RDG [20] method has been shown to be

able to decompose any n-dimensional problem using O(n log(n))
FEs. It identifies the interaction between two subsets of decision

variables based on Theorem 2.3.

Notation 1. Let X be the set of decision variables {x1, . . . ,xn };
UX be the set of unit vectors in the decision space Rn . Let X1 be a
subset of decision variables X1 ⊂ X ; andUX1

be a subset of UX such
that any unit vector u = (u1, . . . ,un ) ∈ UX1

, we have

ui = 0, if xi < X1. (5)

Theorem 2.3. (Sun et al. [20]) Let f : Rn → ¯R be an objective
function; X1 ⊂ X and X2 ⊂ X be two mutually exclusive subsets
of decision variables: X1 ∩ X2 = ∅. If there exist two unit vectors
u1 ∈ UX1

and u2 ∈ UX2
, two real numbers l1, l2 > 0, and a candidate

solution x∗ in the decision space, such that

f (x∗ + l1u1 + l2u2) − f (x∗ + l2u2) , f (x∗ + l1u1) − f (x∗), (6)

there is some interaction between decision variables in X1 and X2.

The RDG method identifies the interaction between two subsets

of decision variables (X1 and X2) using the following procedure:

(1) Set all the decision variables to the lower bounds (lb) of the
search space (xl,l );

(2) Perturb the decision variables X1 of xl,l from the lower

bounds to the upper bounds (ub), denoted by xu,l ;
(3) Calculate the fitness difference (∆1) between xl,l and xu,l ;
(4) Perturb the decision variables X2 of xl,l and xu,l from the

lower bounds to the middle between the lower bounds and

upper bounds, denoted by xl,m and xu,m respectively;

(5) Calculate the fitness difference (∆2) between xl,m and xu,m ;

(6) If the difference (λ) between ∆1 and ∆2 is greater than a

threshold ϵ , there is some interaction between X1 and X2.

The two subscripts of x denote the values ofX1 andX2 respectively:

‘l ’ is lower bound; ‘u’ is upper bound; and ‘m’ is the mean (middle)

of the lower and upper bounds. Based on this, a recursive grouping

procedure is used to decompose a problem (see supplementary

material or [20] for details).
3

In theory, the threshold ϵ can be set to zero, as any positive value

of the non-linearity term (λ = |∆1 − ∆2 |) implies an interaction be-

tween the subset of decision variables under examination. However

in practice, the value of λ for separable decision variables may be

non-zero, due to the computational round-off errors incurred by

the floating-point operations (see Section 3 for details). Therefore,

a positive threshold value (ϵ > 0) is required to differentiate the

genuine non-zero λ values.

The RDG method estimates a threshold value based on the mag-

nitude of the objective value [11]:

ϵ := α · min

{
| f (x1)|, · · · , | f (xk )|

}
, (7)

where x1, · · · , xk are k randomly generated candidate solutions,

and α is the control coefficient [11]. However, it is non-trivial to

select an appropriate value for α . Moreover, RDG employs a global

3
The supplementary material is available at https://doi.org/10.1145/3205455.3205483.

threshold value to identify the interaction between all pairs of deci-

sion variable subsets in a given problem, which may be insufficient

to deal with problems with imbalanced components [8, 14].

The DG2 [14] method addresses these issues by automatically

estimating a “greatest lower bound” (e
inf

) and a “least upper bound”

(esup) of the round-off errors involved in calculating the non-linearity

term (λ). The decision variables are regarded as separable if λ < e
inf

,

and non-separable if λ > esup. If λ falls between e
inf

and esup, the

threshold value is set to a weighted average of e
inf

and esup. The

weight is calculated as the relative proportion of the separable and

non-separable decision variable pairs that have been identified.

3 THRESHOLD PARAMETER ADAPTATION
FOR RDG

In this section, we derive an upper bound of the round-off errors

incurred by the calculation of the non-linearity term λ, which is then
used as the threshold value for RDG to identify variable interactions.

The arithmetic performed in a modern computing device oper-

ates on floating-point instead of real numbers, which generates two

types of round-off errors: the representation error and arithmetic

error. The representation error results from rounding a real number

to the nearest floating-point number. Let f l : R→ F denote a map-

ping from the set of real numbers (R) to the set of floating-point

numbers (F). The relative representation error (δ ) of a real number

x is defined as

δ =
f l(x) − x

x
. (8)

According to the IEEE 754 standard [1], the absolute value of the

relative representation error (δ ) is bounded by a machine dependent

constant µM, which is half of the machine epsilon ϵM: |δ | < µM.
4

Therefore, the absolute value of the absolute representation error

(|δx |) may grow with the magnitude of x .
The arithmetic error comes from the floating-point arithmetic,

for example the floating-point summation (⊕).5 The IEEE 754 stan-

dard guarantees that the floating-point sum of two real numbers

is equal to the floating-point number closest to the real sum of

the two numbers: x1 ⊕ x2 = f l(x1 + x2). However, this statement

can not be generalized to a series of floating-point sums due to

the accumulation of round-off errors. In other words, there is no

guarantee that the equality x1⊕x2⊕· · ·⊕xn = f l(x1+x2+ · · ·+xn )
is true for n ≥ 3. This property can be generalized to floating-point

subtraction, multiplication and division.

The round-off error involved in the calculation of the non-linearity

term λ =
�� ( f (xl,l )− f (xu,l )

)
−
(
f (xl,m )− f (xu,m )

) ��
comes from two

sources: 1) the arithmetic floating-point subtraction between the

fitness values f (x), and 2) the calculation of the fitness values f (x).
We first calculate the round-off error resulted from the arithmetic

floating-point subtraction between the fitness values. As the IEEE

754 standard guarantees that: x1 ⊖ x2 = f l(x1 − x2), we have

∆̂1 = ˆf (xl,l ) ⊖ ˆf (xu,l ) =
(

ˆf (xl,l ) − ˆf (xu,l )
)
(1 + δ1), (9)

where |δ1 | < µM is the relative representation error. We use x̂ to

denote the floating-point number of x for the sake of simplicity.

4
In the numerical computing software MATLAB, ϵM = 2

−52
and µM = 2

−53
.

5
Circled arithmetic operators (e.g., ⊕, ⊖, ⊗ and ⊘) denote floating-point operators.
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Similarly,

∆̂2 = ˆf (xl,m ) ⊖ ˆf (xu,m ) =
(

ˆf (xl,m ) − ˆf (xu,m )
)
(1 + δ2). (10)

Thus,

ˆλ =
��∆̂1 ⊖ ∆̂2

�� = ��(∆̂1 − ∆̂2)(1 + δ3)
��

=
�� ( ˆf (xl,l ) − ˆf (xu,l )

)
(1 + δ1)(1 + δ3)

−
(

ˆf (xl,m ) − ˆf (xu,m )
)
(1 + δ2)(1 + δ3)

��. (11)

In order to find an upper bound on the accumulated arithmetic

error, the following theorem is used.

Theorem 3.1. (Corless and Fillion [4]) Given a floating-point num-
ber system that satisfies IEEE 754 Standard [1] such that |δi | < µM,
and kµM < 1, we have:

k∏
i=1

(1 + δi )
ei = 1 + θk , (12)

where

|θk | ≤
kµM

1 − kµM

:= γk , ei = ±1. (13)

Theorem 3.1 states that the product

∏k
i=1

(1+δi )
±1

can be written

as (1+θk ), where |θk | is bounded by a machine dependent constant

γk , which is defined as kµM/(1 − kµM). In Eq. (11), k = 2 and

ˆλ =
�� ( ˆf (xl,l )− ˆf (xu,l )

)
(1+θ2)−

(
ˆf (xl,m )− ˆf (xu,m )

)
(1+θ ′

2
)
��, (14)

where |θ2 | ≤ γ2 and |θ ′
2
| ≤ γ2.

In the next step, we estimate the round-off error associated with

the calculation of the fitness value f (x). As the objective functions
are “black-box”, we do not know the exact order of (1 + δi ). To
overcome this difficulty, we introduce the following assumptions.

Assumption 3.2. (Higham [6]) The round-off error grows with the
square root of the number of floating-point operations (Φ) involved in
a calculation.

In other words, to calculate an upper bound on the round-off

error involved in the calculation of the fitness value based on The-

orem 3.1, we assume k ≈
√
Φ. However, in black-box optimization,

the number of floating-point operations involved in the calculation

of the objective function is also unknown. To overcome this diffi-

culty, we assume that the number of floating-point operations (Φ)
has a linear relationship with the dimensionality of the problem

(n) [14].

Assumption 3.3. (Omidvar et. al. [14]) The number of floating-
point operations (Φ) involved in the calculation of a black-box objective
function is in the order of Θ(n), where n is the dimensionality of the
objective function.

This linear assumption is a safe choice as 1) most polynomial

evaluations fall into this group, 2) the upper bound calculated based

on Theorem 3.1 is very conservative; the actual round-off errors are

much smaller in practice [18], and 3) over-estimating the thresh-

old value is detrimental to the detection of interacting decision

variables [14]. Additionally, the empirical evidence in [14] show

that the linear assumption is more reliable than quadratic or cubic

assumptions. Therefore, we use linear assumption, and specifically

let Φ ≈ n.

Theorem 3.4. Under Assumption 3.2 and Assumption 3.3, an upper
bound on the round-off errors associated with the calculation of the
non-linearity term λ is given by

|λ− ˆλ | ≤ γ√n+2

(
| f (xl,l )|+ | f (xu,l )|+ | f (xl,m )|+ | f (xu,m )|

)
. (15)

Proof. Under Assumption 3.2 and Assumption 3.3, we have

k =
√
n, and

ˆf (x) = (1 + θ√n )f (x). (16)

Substituting Eq. (16) into Eq. (14),

ˆλ =
��f (xl,l )(1 + θ√n )(1 + θ2) − f (xu,l )(1 + θ

′√
n )(1 + θ2)

− f (xl,m )(1 + ˜θ√n )(1 + θ
′
2
) + f (xu,m )(1 + ¯θ√n )(1 + θ

′
2
)
��, (17)

where

��θ√n ��, ��θ ′√n ��, �� ˜θ√n �� and �� ¯θ√n �� are bounded by γ√n . In Theorem

3.1, it is true that (1 + θi )(1 + θ j ) = (1 + θi+j ). Therefore,

ˆλ =
��f (xl,l )(1 + θ√n+2

) − f (xu,l )(1 + θ
′√
n+2

)

− f (xl,m )(1 + ˜θ√n+2
) + f (xu,m )(1 + ¯θ√n+2

)
��. (18)

As the inequality |x1 + x2 | ≤ |x1 | + |x2 | holds for any real numbers

x1 and x2,

ˆλ ≤
��f (xl,l ) − f (xu,l ) − f (xl,m ) + f (xu,m )

�� + ��f (xl,l )θ√n+2

− f (xu,l )θ
′√
n+2

− f (xl,m ) ˜θ√n+2
+ f (xu,m ) ¯θ√n+2

��. (19)

As the inequality |
∑m
i=1

xi | ≤
∑m
i=1

|xi | holds for any positive inte-

germ,

ˆλ ≤ λ +
��f (xl,l )θ√n+2

�� + ��f (xu,l )θ ′√n+2

��
+
��f (xl,m ) ˜θ√n+2

�� + ��f (xu,m ) ¯θ√n+2

��
≤ λ + γ√n+2

(
| f (xl,l )| + | f (xu,l )| + | f (xl,m )| + | f (xu,m )|

)
.

(20)

Therefore,

ˆλ − λ ≤ γ√n+2

(
| f (xl,l )| + | f (xu,l )| + | f (xl,m )| + | f (xu,m )|

)
. (21)

On the other hand, as the inequality |x1 + x2 | ≥ |x1 | − |x2 | holds

for any real numbers x1 and x2, similarly we can obtain

λ − ˆλ ≤ γ√n+2

(
| f (xl,l )| + | f (xu,l )| + | f (xl,m )| + | f (xu,m )|

)
. (22)

Thus,

|λ− ˆλ | ≤ γ√n+2

(
| f (xl,l )|+ | f (xu,l )|+ | f (xl,m )|+ | f (xu,m )|

)
. (23)

□

The upper bound of round-off errors is then used as the thresh-

old value (ϵ) to distinguish between separable and non-separable

decision variable subsets:

ϵ := γ√n+2

(
| f (xl,l )| + | f (xu,l )| + | f (xl,m )| + | f (xu,m )|

)
. (24)

Decision variable subsets are regarded as interacting if
ˆλ > ϵ , and

separable if
ˆλ ≤ ϵ .
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4 EXPERIMENTS
4.1 Methodology
To evaluate the efficacy of the proposed RDG2method, two research

questions guide the experimental study:

Q1. Can the proposed RDG2 method be used to accurately de-

compose large-scale optimization problems?

Q2. Can the proposed RDG2 method generate good solution

quality when embedded into a CC framework to solve large-

scale optimization problems?

To answer Q1, the proposed RDG2 method was used to decom-

pose the CEC’2010 [22] and CEC’2013 [8] benchmark problems.
6

Two metrics were employed to evaluate the performance of the

RDG2 method: 1) the number of FEs used to decompose a prob-

lem; and 2) the percentage of interacting decision variables that

are correctly grouped [20]. The performance of the RDG2 method

was then compared against the performance of the RDG (with

α = 10
−12

) [20] and DG2 [14] methods. Note that RDG2 and DG2

are parameter-free.

To answer Q2, the proposed RDG2 method was embedded into a

CC [11] framework to solve the CEC’2010 and CEC’2013 benchmark

problems. This CC framework used the well-performed Covariance

Matrix Adaptation - Evolutionary Strategy (CMA-ES) [5] algorithm

to solve each component. The parameter settings for CMA-ES were

consistent with the original paper. The maximum number of FEs

was set to 3 × 10
6
, divided between the decomposition stage and

optimization stage. For each benchmark problem, the median, mean

and standard deviation of the best solutions found by the CC-RDG2

algorithm (with CMA-ES as the component optimizer) based on 25

independent runs were recorded. The performance of the RDG2

method was compared against the performance of the RDG and

DG2 methods, when embedded in the CC framework.
7

The Kruskal-Wallis nonparametric one-way ANOVA test [17]

with 95% confidence interval was used to determine whether the

performance of at least one algorithm was significantly different

from the others. Then a series of Wilcoxon rank-sum tests (signifi-

cance level = 0.05) with Holm p-value correction [17] was conducted

in a pairwise fashion to find the best performing algorithm(s).

4.2 Experimental Results
The decomposition comparison between RDG2 and the other two

methods is presented in Section 4.2.1, while the optimization com-

parison is presented in Section 4.2.2.

4.2.1 Decomposition Comparison. The experimental results of

the RDG2, RDG and DG2 methods when used to decompose the

CEC’2013 benchmark problems are shown in Table 1. The RDG2

method consistently generated equally well or better results than

RDG and DG2 on the partially separable problems (f4 to f11).

The first three problems (f1-f3) are fully separable. Therefore, de-
composition accuracy is not applicable to these problems [20]. The

CEC’2013 f13 and f14 are benchmark problems with overlapping

(conforming or conflicting) components. It is not yet clear what is

the best approach to decompose these problems [8, 13, 20]. The ex-

isting intelligent decomposition methods place all the overlapping

6
The MATLAB source code of RDG2 is available at https://bitbucket.org/yuans/rdg2.

7
If not specified, CMA-ES is always used as the component optimizer.

Table 1: The experimental results of the RDG2, RDG (with
α = 10

−12) and DG2 methods when used to decompose the
CEC’2013 benchmark problems. “a” denotes the decomposi-
tion accuracy; “FEs” denotes the function evaluations used.
The entries with higher decomposition accuracy are high-
lighted in bold. Different categories of benchmark problems
are divided by the lines.

Func RDG2 RDG (α = 10
−12

) DG2

ID a FEs a FEs a FEs

f1 – 2.99e+03 – 3.00e+03 – 5.00e+05

f2 – 3.04e+03 – 3.00e+03 – 5.00e+05

f3 – 5.99e+03 – 6.00e+03 – 5.00e+05

f4 100% 9.83e+03 100% 9.84e+03 100% 5.00e+05

f5 100% 9.83e+03 100% 1.01e+04 100% 5.00e+05

f6 100% 1.12e+04 100% 1.32e+04 100% 5.00e+05

f7 100% 9.81e+03 100% 9.82e+03 83.3% 5.00e+05

f8 80.0% 1.91e+04 80.0% 1.95e+04 78.5% 5.00e+05

f9 100% 1.91e+04 100% 1.92e+04 100% 5.00e+05

f10 100% 1.93e+04 82.7% 1.91e+04 100% 5.00e+05

f11 100% 1.93e+04 10.0% 1.06e+04 100% 5.00e+05

f12 100% 5.08e+04 100% 5.08e+04 100% 5.00e+05

f13 – 1.51e+04 – 8.39e+03 – 4.10e+05

f14 – 1.61e+04 – 1.61e+04 – 4.10e+05

f15 100% 5.99e+03 100% 6.16e+03 100% 5.00e+05

components into one group. On the other benchmark problems

where the components are independent from each other, the “ideal”

decomposition can possibly be achieved [8, 13, 20]. Note that the

100% decomposition accuracy in Table 1 corresponds to the ideal

decomposition.

On f10 and f11, RDG2 achieved 100% decomposition accuracy,

while the decomposition accuracy of RDG was low. On f7 and f8,
RDG2 generated higher decomposition accuracy than DG2. This

observation implied that the threshold value estimated by RDG2

was more reliable than those estimated by RDG and DG2. The DG2

method approximated the “greatest lower bound” (e
inf

) and “least

upper bound” (esup) of the round-off errors as follows:

e
inf

:= γ2 max

{
| f (xl,l )| + | f (xu,m )|, | f (xu,l )| + | f (xl,m )|

}
,

esup := γ√n max

{
f (xl,l ), f (xu,l ), f (xl,m ), f (xu,m )

}
.

Therefore, the threshold value used by DG2 was smaller than that

by RDG2. The RDG method calculated a global threshold value

based on Eq. (7).

To gain deeper insight into the performance of RDG2, we select

two benchmark problems: f8 and f11, each of which consists of

20 non-separable components with totally 1000 decision variables.

The contribution of each component to the overall fitness value is

unbalanced. Theweight value of each component is shown in Figure

3a and Figure 3b: higher weight values indicate larger contribution

to the fitness value.

We recorded the floating-point value of the non-linearity term

when the corresponding decision variable subsets interact (denoted
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Figure 3: The plots of the threshold value, non-linearity term and weight value of each component on the CEC’2013 f8 and f11.
The horizontal axis represents the indices of each component. In (a) and (b), ˆλint denotes the floating-point value of the non-
linear term ( ˆλ) when the corresponding decision variable subsets interact; “w” denotes the weight value, which represents the
contribution of each component to the overall fitness value. In (c) and (d), ˆλ0.25

int denotes the 25% percentile of the ˆλint values; ϵ
and ϵ ′ denote the threshold values estimated by RDG2 and RDG respectively; ˆλmax

sep denotes themaximumof the floating-point
values of the non-linearity term ( ˆλ) when the corresponding decision variable subsets are separable.

as
ˆλint ) in the decomposition process of RDG2 on f8 and f11. The

value of
ˆλint consists of the genuine λ value and the computational

round-off error. The box plots of the
ˆλint value from each compo-

nent are shown in Figure 3a and Figure 3b. We observed that the

pattern of the
ˆλint value was consistent with the pattern of the

weight value across the components in CEC’2013 f8 and f11.

We also recorded the floating-point value of the non-linearity

term for separable decision variable subsets (
ˆλsep ). It is noteworthy

that the
ˆλsep value represents the computational round-off errors,

as the genuine value of λ is zero for separable decision variable

subsets. Themaximumvalue of
ˆλsep from each component is shown

in Figure 3c and Figure 3d. In Figure 3c and Figure 3d, we also plotted

the threshold values (ϵ) estimated by RDG2, the 25% percentile of

the
ˆλint values and the threshold values (ϵ ′) estimated by RDG.

On f11, the threshold value estimated by RDG2 was always in

between the 25% percentile of the
ˆλint value and the maximum

of
ˆλsep , resulting in 100% decomposition accuracy of RDG2. On

the other hand, the RDG method used a global threshold value

(ϵ ′ = 1.52e+06), which was always lower than the maximum of

ˆλsep . That explains why RDG failed to identify the variable inter-

action structure and placed all the 1000 decision variables into one

component.

On f8, the threshold value estimated by RDG2 was higher than

the 25% percentile of the
ˆλint value for the 11

th
and 13

th
compo-

nents. That is the reasonwhy RDG2 identified the 200 non-separable

decision variables in the 11
th

and 13
th

components as separable. It

is noteworthy that the 25% percentile of the
ˆλint value from the

11
th
and 13

th
components is in the same magnitude of the round-off

errors (the maximum of
ˆλsep ). Therefore, it is very challenging, if

possible, to identify the interacting decision variables in these two

components. However, we argue that the 11
th
and 13

th
components

are not important in terms of the optimization task, as they only

contribute marginally to the overall fitness value, as indicated by

the weight values.

The number of FEs used by RDG2 was close to the one used

by the RDG method on most of the benchmark problems. On f11,

the number of FEs used by RDG2 was slightly larger than those

by RDG. The reason for this was that RDG failed to identify the

variable interaction structure by placing all the decision variables

into one group. The DG2 method used a fixed number of FEs (n2 +

n+ 2)/2 to identify the interaction matrix (all pairwise interactions)

of decision variables. Once the interaction matrix is identified, it is

possible to generate a more effective decomposition for problems

with overlapping components, e.g., f13 and f14.
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The RDG2, RDG and DG2methods achieved 100% decomposition

accuracy on all of the CEC’2010 benchmark problems. The detailed

results were presented in the supplementary material.

4.2.2 Optimization Comparison. Table 2 lists the optimization

results of the RDG2, RDG and DG2 methods when embedded into

the CC framework to solve the CEC’2013 benchmark problems.

The CC-RDG2 algorithm consistently achieved statistically equally

well or significantly better solution quality than the other two

algorithms.

On most of the benchmark problems where the decomposition

results of RDG2 and RDG were similar, CC-RDG2 and CC-RDG

performed equally well. However, when the decomposition accu-

racy of RDG2 was higher than that of RDG, the solution quality

generated by CC-RDG2 is potentially better than that generated

by CC-RDG, e.g., on f11. Refer to the convergence curve shown in

Figure 4c.

The CC-RDG2 algorithm outperformed CC-DG2 on most of

the benchmark problems. The main reason for this is that RDG2

used much less FEs than DG2 in the decomposition stage, saving

more FEs for the optimization stage. On the benchmark problems

where the decomposition accuracy of RDG2 was higher than that

of DG2, the CC-RDG2 was able to find statistically significantly

better solution quality than the CC-DG2 algorithm, e.g., f7 and f8
(Figure 4a and Figure 4b).

It is noteworthy that the DG2 method used more FEs than the

RDG method to decompose f11, therefore less FEs were left to

actually optimize the problem (the optimization stage). However,

the CC-DG2 algorithm generated even better solution quality than

CC-RDG (Figure 4c). The reason for this is that DG2 achieved 100%

decomposition accuracy on f11, while the decomposition accuracy

of RDG was low. This is why DG2 used approximately 50 times

more function evaluations than RDG in the decomposition stage.

This observation confirms that the decomposition accuracy is of

crucial importance in problem decomposition.

The RDG2 method also consistently achieved statistically similar

or significantly better solution quality than the other two methods

when embedded into the CC framework to solve the CEC’2010

benchmark problems. The detailed optimization results were placed

in the supplementary material due to page limits.

5 CONCLUSION
In this paper, we have derived an upper bound on the computational

round-off errors involved in calculating the non-linearity term (λ)
for the RDGmethod. This upper bound was then used as the thresh-

old value, and was shown to be able to identify variable interactions

across a wide range of benchmark problems. However if the gen-

uine value of the non-linearity term was of the same magnitude

as the computational round-off errors, the corresponding variable

interaction was difficult to identify. We found that the pattern of the

non-linearity term for interacting decision variables was consistent

with the pattern of the weight value from each component in two

benchmark problems: CEC’2013 f8 and f11. However, more research

needs to be conducted in order to draw any conclusion. Another

direction for future work is to generate an effective decomposition

for large-scale problems with overlapping components.

Table 2: The optimization results of the RDG2, RDG and
DG2 when embedded into the CC framework to solve the
CEC’2013 benchmark problems. The entries with the best
solution quality are highlighted in bold according to the
Wilcoxon rank-sum tests (significance level = 0.05) with
Holm p-value correction.

Func Stats RDG2 RDG DG2

f1

median 2.76e+05 2.84e+05 5.48e+05

mean 2.78e+05 2.89e+05 5.51e+05

std 3.16e+04 3.27e+04 5.87e+04

f2

median 4.70e+03 4.66e+03 4.69e+03

mean 4.70e+03 4.68e+03 4.68e+03

std 2.05e+02 1.77e+02 1.80e+02

f3

median 2.04e+01 2.03e+01 2.04e+01

mean 2.04e+01 2.03e+01 2.04e+01

std 4.34e-02 4.95e-02 5.21e-02

f4

median 5.81e+06 5.81e+06 8.43e+06

mean 5.83e+06 5.83e+06 8.51e+06

std 6.32e+05 6.32e+05 8.54e+05

f5

median 2.24e+06 2.34e+06 2.17e+06

mean 2.23e+06 2.40e+06 2.18e+06

std 3.22e+05 4.35e+05 3.51e+05

f6

median 9.95e+05 9.95e+05 9.95e+05

mean 9.95e+05 9.96e+05 9.96e+05

std 6.54e+01 1.47e+02 3.31e+02

f7

median 3.12e-19 2.93e-20 1.00e+03

mean 4.04e-16 8.11e-17 1.05e+03

std 1.48e-15 2.17e-16 2.78e+02

f8

median 8.15e+06 8.26e+06 3.56e+07

mean 8.70e+06 8.50e+06 3.84e+07

std 3.61e+06 2.91e+06 1.08e+07

f9

median 1.74e+08 1.57e+08 1.52e+08

mean 1.67e+08 1.65e+08 1.51e+08

std 2.65e+07 4.16e+07 2.86e+07

f10

median 9.05e+07 9.05e+07 9.05e+07

mean 9.10e+07 9.10e+07 9.13e+07

std 1.30e+06 1.29e+06 1.50e+06

f11

median 2.81e+03 1.68e+07 1.55e+05

mean 8.68e+03 1.67e+07 2.47e+05

std 1.24e+04 1.61e+06 2.36e+05

f12

median 1.01e+03 1.01e+03 1.01e+03

mean 9.81e+02 9.81e+02 1.00e+03

std 7.30e+01 7.30e+01 5.80e+01

f13

median 9.04e+05 2.48e+06 2.27e+06

mean 9.31e+05 2.46e+06 2.42e+06

std 1.60e+05 3.82e+05 3.69e+05

f14

median 2.65e+07 2.74e+07 3.65e+07

mean 2.68e+07 2.76e+07 3.58e+07

std 1.88e+06 1.80e+06 2.85e+06

f15

median 2.23e+06 2.18e+06 2.93e+06

mean 2.26e+06 2.19e+06 3.01e+06

std 2.45e+05 2.28e+05 3.29e+05
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Figure 4: The convergence curves of the RDG2, RDG and DG2 methods when embedded into the CC framework to solve the
CEC’2013 f7, f8, f11 and f13 problems. The horizontal axis represents the number of FEs used in the evolutionary process. The
vertical axis represents the median of the best fitness found. In the legends, “a” denotes the “accuracy” of decomposition, and
“NA” denotes “not applicable”.
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