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ABSTRACT

Conventional mixed-integer programming (MIP) solvers can strug-
gle with many large-scale combinatorial problems, as they contain
too many variables and constraints. Meta-heuristics can be applied
to reduce the size of these problems by removing or aggregating
variables or constraints. Merge search algorithms achieve this by
generating populations of solutions, either by heuristic construc-
tion [4], or by finding neighbours to an initial solution [12]. This
paper presents a merge search algorithm that improves the popu-
lation generation heuristic in [12] and utilises a variable grouping
heuristic that exploits the common information across a population
to aggregate groups of variables in order to create a reduced sub-
problem. The algorithm is tested on some well known benchmarks
for a complex problem called the constrained pit (CPIT) problem
and it is compared to results produced by a merge search algorithm
previously used on the same problem and the results published on
the minelib [9] website.
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1 INTRODUCTION

Many modern optimisation problems are difficult for conventional
mixed-integer programming (MIP) solvers because of the large
number of variables and constraints they contain. Real-world prob-
lems such as those found in the field of open-pit mining optimi-
sation are particularly susceptible to these problems, due to their
massive physical and chronological scale and often complex con-
straints. Various techniques have been developed, called hybrid
meta-heuristics [17], in order to decompose, reduce or otherwise
transform these intractable search spaces, by removing redundant
variables and constraints, such that they can be solved by con-
ventional solvers. Among this family of techniques are column
generation [8], which initially considers only a restricted subset of
the variables, with more added as they are needed; Benders’ decom-
position [1], which splits a large problem into smaller sub-problems
that are then solved and recombined; branch-and-cut [5], which
uses the ability of meta-heuristics to find feasible solutions quickly
in order to prune a branch-and-bound tree; and many more.

One more recent branch of research in this area concerns so-
called merge search algorithms [4, 12, 18, 19]. These algorithms use
information from a population of solutions to determine a subset of
decision variables to be included in a reduced sub-problem that is
then solved using a MIP solver. Often, these variables are included
in the reduced sub-problem individually, so for large problem in-
stances, it is still impossible to search a very large neighbourhood.
This paper presents an algorithm, ImprovedMerge, that builds on the
ParallelMerge algorithm in [12], and gives an improved method
of generating the population which encourages the creation of
a more compact and effective reduced sub-problem. It also uses
a variable grouping heuristic similar to that in [18] that exploits
population information to aggregate variables into groups and al-
lows for further reduction in the problem size, without sacrificing
neighbourhood size; or, alternatively, allowing for a larger neigh-
bourhood to be searched for the same computational resources. The
trade-off for this is a reduction in the resolution of the search and
this is discussed in Section 5.

This improved algorithm is applied to solve a real-world problem
from the well-known minelib dataset [9], called the constrained pit
(CPIT) problem. CPIT combines the two most important problems
in open-pit mining: what to mine; and when to mine it. The mining
industry is a very important industry in Australia and around the
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world, and because the problems are on such a large-scale, it is
critical to be able to minimise costs wherever possible. Due to their
size and structure, open-pit mining problems are well-suited to
merge search algorithms.

Experiments are performed that compare ParallelMerge with
ImprovedMerge and against the published results in minelib. Im-
provedMerge is found to produce better quality results than Par-
allelMerge in all instances and is better than the publish minelib
results in five of the six instances.

2 BACKGROUND

This section gives a description of the CPIT problem, introduces
ways in which it can be modelled and gives a brief survey of how
other researchers have approached solving it, as well as previous
work from other researchers that relates to merge search.

2.1 Related work

This paper extends the ParallelMerge algorithm for the CPIT prob-
lem [12], which itself is built upon three main works [4, 13, 18].
In their previous work, [13], Kenny et al. presented a greedy ran-
domised adaptive search procedure (GRASP) framework for solving
the precedence constrained production scheduling problem (PCPSP)
in open-pit mining. The GRASP algorithm greedily constructs so-
lutions in a period-by-period fashion which are then improved
by solving a reduced sub-problem on a set number of periods us-
ing a “sliding window” heuristic. They used a similar method to
the cone-based preprocessing technique from this work for the
ParallelMerge algorithm, and the algorithm that is presented here
uses the same method to generate the initial seed solutions.

In [18], Thiruvady et al. introduces a merge algorithm for the
PCPSP and shows that it improves several of the best known linear
programming (LP) bounds. The “sliding window” heuristic used
in [13] is an extension of this work. Thiruvady et al. also describe
a method of aggregating variables to reduce the size of the sub-
problem to be solved by comparing the values of the variables
across the entire population. Similar techniques are applied to solve
a scheduling problem in [19]. This variable aggregation heuristic is
adopted as part of the algorithm presented in this paper; however
the methods of generating the merge population are vastly different
between the two studies and so the behaviour of the merge search
itself is very different.

Some parallels can be drawn between the merge algorithm de-
scribed here and in [13] and [18] and the construct, merge, solve
and adapt (CMSA) algorithm by Blum et al. [4]. In CMSA, solutions
are generated from scractch and their components added to an ini-
tially empty sub-instance C’. This sub-instance is solved using an
exact solver and any components in C’ that have not been useful in
previous iterations can be removed by the use of a so-called ageing
mechanism. Because the CPIT problem is so large and complex,
it is too costly to generate solutions from scratch, and even then
it is hard to guarantee that they will be of any good quality. This
is the main area in which the merge search algorithms presented
in [12, 18] and this paper differ greatly to CMSA. The population for
merge search comprises neighbouring solutions to an initial solu-
tion; while CMSA generates the solutions, from which it draws their
constituent components, from scratch. There is also no need for an
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ageing mechanism in merge search to regulate the population, as
each iteration produces a new set of solutions.

Open-pit mining problems are as old as mining itself; but they
have been formalised as mathematical problems since the 1960s.
Despite this, very little exists in the literature on how to solve
them using meta-heuristic techniques, perhaps because of their
large-scale nature. In [7], a topological sorting heuristic is used to
repair the solution to the LP relaxation of the CPIT problem. Once
a feasible solution is obtained from the fractional LP solution, it is
then improved by a local search algorithm.

Jélevez et al. [11] use a heuristic technique to aggregate the
blocks of the CPIT problem into larger groups. This reduces the
number of variables and constraints in the problem model and
allows it to be solved more efficiently. Solutions to this simplified
model are then iteratively disaggregated to obtain better solutions.

Extra inequality constraints are added by Bley et al. [3] in order
to strengthen the MIP formulation for various open-pit mining
problems. Due to the size of the problem instances, this strength-
ened formulation was not tested on the minelib instances, but it is
shown that the extra constraints effectively reduce the computation
time needed by CPLEX to solve their custom problem instances.
For a good survey of research in these related areas, see [10, 15].

In their masters’ thesis, Munioz uses a modified version of the
Bienstock and Zuckerberg algorithm [2] to solve the LP relaxation
before using a topological sorting algorithm to produce a feasible
solution, similar in method to Chicoisine et al. [7]. It is the results
from these experiments that are published on the minelib website,
and used for comparison in this paper.

2.2 Problem description

This work extends [12], which itself builds on [13], which uses
a GRASP algorithm to solve the PCPSP. This section will give a
brief introduction to the CPIT problem to which the algorithms in
this paper are applied to solve. The reader is directed to [13] for a
detailed description of the properties and constraints involved in
general open pit mine planning problems, and [12] for a detailed
description of the CPIT problem and how it relates to the PCPSP.
The CPIT problem is a simplified abstraction of two of the most
significant tasks in open-pit mining: deciding what to mine, and
deciding when to mine it. It divides the orebody of the mine into
blocks, each given a value based on its ore content, and relates each
of the blocks to its neighbours by way of precedence constraints.
The objective of the problem is to maximise the net present value
(NPV) of the mine, taking into account the following restrictions:

(1) Each block is mined at most once.

(2) The predecessor blocks must be mined in the same period
or earlier.

(3) The resource limits consumed in mining blocks must not be
violated.

Although this problem is characterised as a “real-world” problem,
it is worth noting that the CPIT problem is a significantly simpli-
fied abstraction of the day-to-day considerations and constraints
involved in open-pit mining. There are many more factors that
need to be taken into account if this problem is to be considered a
true model of reality such as uncertainty in the ore composition of
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blocks, position and cost of moving machinery, complex pit shapes
and other operational and business constraints.

2.3 Mathematical formulation of CPIT

The CPIT problem consists of the following sets and parameters:

the set of blocks;
the set of time periods;

the set of resources. Typically, |R| = 2;

N

the set of precedences. a — b if (a,b) € P means block a
must be mined before block b;

the profit for mining block b at time ¢ (can be negative if it is
a cost only). For the minelib data this is simply (Hdli#m)t
for some base cost p;, and a discount value typically in (0, 1);

qpr the amount of resource r required by block b; and,

R,;  the amount of resource r available in time period ¢.

The variables used to solve this problem are:

is a binary variable that is one if block b is mined in period
t or earlier (that is, the block has been removed by the end
of period t)

Xbt

Using this notation, the problem is written as:

max Z Zpbt(xbt = Xpt-1)» (1)
beB LEL

s.t.,
Xpr < Xat VY (a,b) e P, teT, (2
Xbt be,t+1 VbEB,t ET, (3)
Z br (bt = Xpr-1) < Ryt VreRteT, (4)
beB
xps € {0,1} YbeB,teT. (5

Note: for correctness, in (4) for the first time period, no previous x
is to be subtracted. See [12] for a full discussion of this formulation.
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The algorithm in this paper builds on the ParallelMerge algorithm
that is detailed in [12], so the reader is directed there for a full
description of the algorithm; however, a brief outline will be given
here along with the key findings of that paper.

ParallelMerge achieves a reduction in the problem it is applied
to by fixing the bulk of its decision variables and focusing only
on a smaller subset of variables. This subset is determined by first
heuristically constructing an initial solution of reasonable quality,
and then using a local search algorithm to generate a population
of neighbouring solutions. This population of solutions are then
“overlaid” on each other to determine all of the decision variables
that are different between the initial solution and each of the so-
lutions in the population. This set of variables is the set that the
reduced sub-problem focuses on, and a MIP solver will determine
the best solution available in this neighbourhood.

Merge search
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The basic merge search algorithm starts off with a single initial
seed solution and goes through a process of generating a popula-
tion, merging and finally solving the reduced sub-problem using
a MIP solver. The solution to this reduced sub-problem becomes
the initial seed solution to the next generation. The parallel version
is similar to this, except it starts with n initial seed solutions and
runs through the cycle of generate, merge, solve with each of these
solutions in parallel, before finally merging all of the populations
and performing one final solve.

2.5 Solving CPIT with merge search

Because the structure of the CPIT problem necessitates there being
many variables that will always be 0, it was found in [12] that
the CPIT problem was a perfect candidate to apply a merge search
algorithm to. When the problem is represented as a graph (Figure 1),
a solution to the problem becomes a closure on that graph and a
partition of the variables that are 0 and the variables that are 1.

— D

time period 0 time period 1

Figure 1: A solution to the CPIT problem as a closure. Here
blocks 1, 2, 3 and 4 are mined in period 0; and blocks 0, 5 and
6 are mined in the second period.

The initial solutions were constructed using a similar method to
that used in their previous work on the PCPSP [13], where cones
of blocks are computed and ranked according to their value and
resource usage and then mined heuristically until the resource limits
were reached for each period, and then the cones are recomputed
and ranked for the next period. This process continues until all the
blocks are mined or there are no more periods left to mine.

A simulated annealing [14] based algorithm was used as a local
search technique to generate the population of neighbouring solu-
tions. This algorithm is based on an abitrary block swap operator,
where a block is chosen at random and its cone is computed and all
blocks in that cone are swapped to the nearest period. Sometimes
this puts the resource limits out of balance, so another swap is
performed to try and balance it out, and this continues until the
solution is feasible or a predetermined number of swaps is reached
— at which point the move is abandoned and a new one attempted.

It was found during these experiments that the simulated an-
nealing heuristic was unnecessary and that purely random swaps
would suffice, so the simulated annealing heuristic was not used
for this paper, however elements of it (such as the arbitrary block
swaps) were kept.

2.6 Variable grouping heuristic

Thiruvady et al. [18] give a variable grouping heuristic for use
with merge search algorithms. It uses information from across
the entire population to determine variables that can be grouped
together and treated as a single variable, in order to reduce the size
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of sub-problem. Figure 2a gives an abstraction of the set of decision
variables for a binary optimisation problem. A solution to any such
problem can be represented as a partition between the variables
that take the value 0 and those that take the value 1.

(a) Neighbouring solution with (b) Neighbourhood region with
differing subsets optimal solution

Figure 2: Each neighbouring solution contains a differing
subset of variables to its initial solution. Merging a popu-
lation of solutions allows a picture of the neighbourhood
region to emerge.

In Figure 2, the initial solution is shown as the short-dashed
line in the middle. The neighbourhood of this initial solution is
defined by the region that contains all possible solutions that are
reachable in a given number of local moves and is represented by
the longer-dashed lines. A neighbouring solution is defined as one
that can be produced by performing a series of local moves on the
initial solution; it is represented by the solid black line. The shaded
regions are the decision variables that differ in value between the
initial solution and the neighbouring solution - referred to here as
the differing subsets.

By sampling and merging a sufficiently large and diverse pop-
ulation from the possible neighbouring solutions, a picture of the
neighbourhood region can be built up by finding the union of all
of the differing subsets. A reduced MIP sub-problem can then be
created by fixing all variables in the 0 region to 0, all variables in
the 1 region to 1 and only allowing the solver to focus on those
variables in the differing subsets. When solved, provided it lies
within the neighbourhood region, the reduced sub-problem is able
to find the optimal solution (Figure 2b).

The problem then lies when the optimal solution is outside the
neighbourhood boundary. This can happen when the initial solution
is of poor quality, or the neighbourhood being used is too small
(Figure 3a).

(a) Optimal solution is outside
neighbourhood

(b) Reduced sub-problem pro-
duces sub-optimal solution

Figure 3: When the optimal solution is outside of the neigh-
bourhood, the reduced sub-problem cannot find it; even
with perfect neighbourhood information.

Figure 3b illustrates that even as the size of the population tends
towards infinity, although the neighbourhood boundary is approx-
imated better, the reduced subproblem is unable to be solved to

297

A. Kenny et al.

optimality. The simple solution to this problem is to increase the
size of the boundary region by either increasing the number of
moves, or the size of each move - whichever is appropriate to the
local search algorithm being used - however, this requires more
free variables in the reduced sub-problem and hence more compu-
tational resources to solve it.

3 IMPROVED MERGE SEARCH FOR CPIT

This section gives a description of ImprovedMerge, the merge
search algorithm presented in this paper that builds on Paral-
leIMerge from [12]. It describes the improvements made to the popu-
lation generation heuristic that create a more compact and effective
reduced sub-problem, and also the variable grouping heuristic that
helps to reduce the sub-problem further.

3.1 Population generation

The method of population generation employed by ImproveMerge
is more greedy than that in ParallelMerge and differs in a number
of ways. ParallelMerge uses a swap operator controlled by a sim-
ulated annealing algorithm [14] that accepts or rejects arbitrary
swaps according to a probability function and temperature variable.
The temperature variable works by increasing the probability that
a “bad” move will be accepted early on in the search, reducing
this probability as the search goes on and the temperature “cools”.
These heuristics are generally useful in avoiding local optima, as
they will still accept moves that improve a solution, but are able to
explore more of the search space by accepting moves that temporar-
ily worsen it. In the case of the CPIT problem however, the number
of possible moves from any problem state is so large and the size
of the moves so small, that any advantage gained by accepting a
worsening move is outweighed by the cost of including those extra
variables in the reduced sub-problem. To combat this, the improved
algorithm presented here includes a number of changes to the local
search heuristic that encourages adding variables to the reduced
sub-problem that will lead to better quality solutions.
ImprovedMerge does away with the simulated annealing alto-
gether and uses a (semi-guided) random walk. As each individual
move is very computationally cheap, a set of potential moves is
generated at the start of each iteration; the best move (i.e., the one
that has the best ratio of impact on objective value to impact on
resource consumption) being chosen from this set and used as the
initial move. This initial move is likely to have caused the resource
constraints to be violated in one of the periods; so arbitrary swap
moves are performed around the period boundary in order to repair
the solution. This repaired solution is added to the population if
and only if the set of moves contains at least one move that would
improve the objective value of the solution in its own right, re-
gardless of whether the over-all objective value is better than the
seed solution; otherwise, it is discarded and nothing added to the
population for that iteration. The reason for this is that even though
the final solution may be of worse quality, it still contains some
variables that when included in the reduced sub-problem could
produce an improvement. Furthermore, if the generated solution is
of better quality than the seed solution, it replaces the seed solution
in the population so that the next solution to be generated will
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(a) Solutions {a, b} and {c, d} (b) Solution with groups {a, d}

(c) Solution with groups {b, c}

(d) Solution with groups {a, b, ¢, d}

Figure 4: By selecting different combinations of variable groups in the reduced sub-problem, new solutions can be generated.

start from a better starting point. In ParallelMerge the same seed
is used to generate the entire population.

The effect of these changes means that fewer variables are added
to the reduced sub-problem, and those that are added are more
likely to produce better solutions when solving the sub-problem.
By greedily updating the starting seed solution, it means that any
previously accepted moves are included initially, and removes the
likelihood of repeating the same moves while also allowing future
moves to be built on top of previous ones. Without the greedy seed
updating, all solutions in the population remain within one step of
the initial solution.

3.2 Variable grouping

In order to allow for the largest neighbourhood possible in the
reduced sub-problem with the same amount of computation re-
quired to solve it, decision variables can be grouped together and
consdered as a single variable in the reduced sub-problem.

There are certain decision variables that when included in a
solution, imply that ones around them should also be included, and
so it makes sense to group them together as a single variable. In
the case of the CPIT problem, this can be because they are near
each other in physical space, or because of precedence constraints;
but there are other ways that this can also happen. The structure
and nature of each problem will determine the appropriate way for
variables to be grouped together.

It was shown previously that generating a new solution that
is in the neighbourhood yields a subset of the decision variables
that have been changed from their value in the initial solution in
order to create this new solution. This information in the differing
subsets can be exploited in order to aggregate the decision variables
automatically as, in order to generate the new solution, a series of
neighbouring moves must be performed on the initial solution, cre-
ating a chain of feasible solutions that lead from the initial solution
to the solution in question.

For example, if the population consists of two solutions that are
considered independent (i.e., there is is no intersection between
their differing subsets and no dependency between them in the
constraints), all of the variables in each of the differing subsets can
be considered as a single group; and as such treated as a single
variable in the restricted sub-problem. Figure 4 shows one such
example, where one solution is made up of subsets {a, b} and the
other solution is made up of subsets {c, d}. This figure shows that
along with the initial solution and two population solutions, three
more feasible solutions can also be found (in this case, solutions with
groups {b, d} would not be feasible as it would become unbalanced).

This is obviously a very coarse way of searching for new solu-
tions, and it is hard to guarantee that all of the solutions in the
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population will be independent from each other, and so allow for
each differing subset to be considered as a single group. However, it
is possible to use the overlapping nature of these differing subsets to
increase the granularity of the groups and so increase the number
of possible solutions, some care just needs to be taken in order to
preserve precedence (or any other type of) constraints.

Figure 5a shows how the intersections between the differing sub-
sets of variables obtained from each solution in the population can
be used to create groups of decision variables that can be considered
as a single variable in the reduced sub-problem.

|
SUMIE
(a) Population of neighbouring (b) Precedences exist between
solutions groups (labelled a-1)

Figure 5: Overlapping differing subsets in the population
creates natural groups of variables, but there still exists the
same precedence constraints between groups.

Each yellow region in this figure that is bounded by a thick black
line can be considered a group in its own right, and new solutions
can be found by the MIP solver by creating various combinations of
these groups, paying attention to any constraints that exist in the
original problem. Figure 5b shows a subset of the groups in order
to illustrate this concept.

Group a cannot be included in a solution to the reduced sub-
problem on its own, as there are a number of variables that must
precede the variables in this group. So, in order to include the
variables in group a into this solution, the groups {c, f} must also
be included. Similarly, in order to include the groups {a, h} into the
solution to the sub-problem, the groups {c, f, g, i, j, k, [} must also
be included in order to satisfy all precedence constraints. This does
not take into account any other type of constraint, and any others
must be included in the MIP for the reduced sub-problem explicitly.

3.3 Approximating solutions

Given a problem, an initial solution and a population of neighbour-
ing solutions, Figure 6 shows how this grouping heuristic can be
used in order to find an approximate solution to an optimal solution,
if it exists within the neighbourhood of the initial solution.

A population of solutions is generated using a local search tech-
nique and the decision variables are grouped based on the differing
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(a) Optimal solution within (b) Selected group boundaries
neighbourhood form new partition

Figure 6: The boundaries of the included groups from the re-
duced sub-problem forms a new partition that approximates
the optimal solution.

subsets of all solutions in the population; and their intersections. A
restricted sub-problem is created with each of the aggregate groups
being represented as a single variable in the sub-problem; with all
precedences encoded in the MIP model.

The decision variables are aggregated into groups based on the
differing subsets from all of the solutions in the population; and
their intersections. The reduced sub-problem is solved to determine
which groups are included in the new solution, and so which deci-
sion variables to include. A mapping between groups and decision
variables is kept in a data structure that can be referenced in order
to convert the solution to the restricted problem to a solution to
the original problem. Groups are included in the solution such that
their collective boundary, along with the initial solution, form a
new, feasible, partition that approximates the optimal solution.

It can be seen in Figure 6 that the more groups that are in the
reduced sub-problem, the finer grained the approximation that can
be obtained; however this requires more variables in the MIP and
so more computational resources in order to solve it. A balance
between the size of these groups and their number is the one of
the most important considerations when setting up the reduced
sub-problem to be solved. To this end, it could be useful to find
some method of further aggregating the groups such that their size
can be determined through the use of a parameter to control the
granularity of the search.

3.4 Pseudocode

Algorithm 1 gives the pseudocode for ImprovedMerge. The con-
stants np, and nyep are the number of merges and the population
size respectively. The function localSearch(S) returns a solution
that is within the neighbourhood of S; the function improving(S)
returns true if S contains a move that improves the objective value
in its own right; the function merge(#) merges population # and
returns the solution to the reduced sub-problem; and, the function
max(S, S’) returns the solution from the set {S, S’} with the highest
objective value.

4 EXPERIMENTAL DESIGN

This section gives the details of the datasets from minelib [9] and
outlines the experiments that were performed.

4.1 Datasets

Table 1 details the properties of the problem instances used to test
the algorithm in this paper. The instance name is given in the first
column; followed by the number of blocks in the orebody model;
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Input: S (Initial seed solution)
for m =0 ton,, do
P—0
for p = 0 tonpop do
S’ « localSearch(S)
if improving(S’) then
| Pe—PUS
end
S « max(S,S’)
end
S « merge(P)
end

Algorithm 1: ImprovedMerge

the number of precedence arcs for each instance is provided in the
third column; the fourth column gives the total number of time
periods available; the number of decision variables is shown in the
second last column; with the last column giving the total number
of constraints in the problem model.

Table 1: Characteristics of minelib [9] datasets.

Instance Blocks Precedences Periods Variables Constraints
newman1 1,060 3,922 6 6,360 29,904
zuck_small 9,400 145,640 20 188,000 3,100,840
kd 14,153 219,778 12 169,836 2,807,196
zuck_medium 29,277 1,271,207 15 439,155 19,507,290
marvin 53,271 650,631 20 1,065,420 14,078,080
zuck_large 96,821 1,053,105 30 2,904,630 34,497,840

A few instances from the full minelib dataset were omitted due
to missing files, referencing more than two resources or being too
large for the algorithm in its current incarnation.

4.2 Parameters

By doing away with the simulated annealing aspects of the local
search, the number of parameters was able to be reduced signifi-
cantly. The main parameters used by the improved merge search
algorithm are: npp, the size of the population of neighbouring solu-
tions to be generated; n;, the size of the set of moves generated to se-
lect the initial move from; and n,, the number of merges performed
each run. The values of these parameters were chosen in order to
approximate the computational budget of ParallelMerge [12].
ParallelMerge uses a npop value of 20. Because the simulated
annealing heuristic in ParallelMerge takes longer than the random
walk to generate a solution and it also contains more variables
in its differing subset, a value for Npop of 1000 was chosen for
ImprovedMerge as it gives a better picture of the neighbourhood
and still can be generated faster than the much smaller population in
ParallelMerge. There is no equivalent parameter in ParallelMerge
for n;, so a value of 2000 was chosen after testing several different
candidates. As the simulated annealing heuristic is much slower
than the random walk and the reduced sub-problem contained
many more variables, Kenny et al. were not able to perform many
merge operations in the given computational budget. Due to the
speed of the population generation and the problem reduction
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Table 2: Results on minelib dataset instances. Given are the linear programming (LP) upper bound, the published minelib
results, the mean objective value (dollars) for each of the algorithms and the standard deviation; and the mean time (seconds)
to beat minelib or complete a run, and the standard deviation. Only the objective value for minelib [9] is given, as this is the

only information available.

Instance LP UB minelib ParallelMerge ImprovedMerge
objective std. dev. time std. dev. objective std. dev. time std. dev.
newman1 2.449E+07  2.348E+07 2.413E+07 1.506E+04 0.48 0.13 2.418E+07 1.165E+02 1.71 0.32
zuck_small 8.542E+08  7.887E+08 8.390E+08 9.056E+05 25.73 1.76 8.433E+08 2.078E+06 1.67 0.01
kd 4.095E+08  3.969E+08 4.007E+08 3.339E+06 1,494.92 63.25 4.088E+08 1.881E+05 93.35 8.55
zuck_medium 7.106E+08  6.154E+08 6.473E+08 1.828E+06 801.25 5.02 6.584E+08 8.462E+05 10.03 2.54
marvin 8.639E+08  8.207E+08 8.500E+08  9.534E+05 425.49 4.43 8.539E+08 2.575E+05 14.05 3.63
zuck_large 5.739E+07 5.678E+07 5.182E+07 3.196E+05 16,248.44 676.08  5.441E+07 2.558E+05 6368.21 319.57
acheived by the variable grouping heuristic, many more merge op- 6.55 10° : :
erations were possible. ParallelMerge used a ny, value of 5, whereas --=- ParallelMerge
ImprovedMerge was able to perform 20 merge operations and still | |- ImprovedMerge | i
be significantly faster. sl ImprovedMergeps | " |
S
4.3 Experiments R pommn— -
1
The experiments were run on an Intel® Core™ 5-2320 processor E 6.45 |- i i
(3.0GHz) with 24GB RAM running Linux. All code was implemented % !
in C++ with GCC-4.8.0, using OpenMP [6] for multithreading. The o eI g
boost library implementation of the Boykov-Kolmogorov algorithm 6al ,' |
was used to solve the UPIT problem and CPLEX Studio 12.7 operat- ’ et
ing with up to 4 parallel threads was used to solve the MIPs. s
Using the results published on the minelib [9] website as a base- ‘ : ‘ :
. . 0 1 2 3 4 5
line, comparisons were made between the ParallelMergeresults
Generations

published in [12] and ImprovedMerge. Each algorithm was run 20
times on each instance, recording the mean objective value and
standard deviation of the best produced solution recorded in each
run. The average time taken to beat the objective value from minelib
was also recorded for each instance or, if the algorithm failed to beat
minelib, the total run-time for the algorithm. The minelib data only
provides a single objective value, so no mean objective, standard
deviation or time data was available for comparison.

5 RESULTS AND DISCUSSION

This section gives the results of the experiments outlined in the
previous section and discusses the outcomes.

5.1 Experiments on minelib dataset

The results of the experiments performed on the minelib dataset are
presented in Table 2. The linear programming (LP) upper bound,
current best minelib results [9] and results from Kenny et al. [12]
are given for reference and compared against the results of tests on
the ImprovedMerge algorithm.

Comparing the mean objective values, it can be seen that Im-
provedMerge produced better quality results than ParallelMerge in
every instance; the mean of ImprovedMerge beating ParallelMerge
by over one standard deviation in all cases. It also beat minelib in
all but the largest instance, and for that it closed the gap to the LP
upper bound significantly compared with ParallelMerge.

The mean times recorded show that ImprovedMerge is able
to achieve better quality results than five of the six best results

300

Figure 7: Plot of the current best objective value of
ParallelMerge, ImprovedMerge and ImprovedMerge, s (without
greedy seed update) on zuck_medium for first 5 generations.

from minelib, faster in all instances except newman1. This is be-
cause the simulated annealing heuristic in ParallelMerge is able
to find a better solution without having to merge at all; whereas
ImprovedMerge has to perform one merge operation to beat minelib.

Figure 7 shows a plot of the current best objective value for both
algorithms on zuck_medium for the first five generations. The effect
of the improved population generation heuristic can be seen clearly
in this plot, as the current best objective value for ImprovedMerge
increases quite rapidly during the population generation period
such that even though the search started from a worse quality seed
solution, by the time it has reached the second merge operation, it is
of better quality than the best solution for ParallelMerge up until
all of the merge branches converge to produce the final solution.
After this point there is a less dramatic increase in seed quality
as the local search has found all of the “low hanging fruit” and
the merge operation is needed in order to make any significant
improvement to the quality of the solutions produced.

The most significant contributor to this improvement appears to
be the greedy updating of the initial seed solution, as can be seen
by the plot of ImprovedMerge against ImprovedMergeys. With-
out updating the seed solution, future moves cannot build upon
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Figure 8: In reality, solutions are much more scattered col-
lections of variables.

previous moves. This means that in a population of, say, ten solu-
tions, the best that the merge operation can ever find is a solution
one step away from the initial solution in ten different directions;
whereas, if the seed is able to be updated while the population is
being generated, it allows the merge operation to find a solution
that is ten steps away from the solution in the one direction, if that
is the best way to go.

The larger instances of zuck_medium and zuck_large results
still show a large optimality gap. A reason for this could be that
because there are so many possible moves from any given state,
and each of the moves are so small relative to the over-all mine,
that it is causing the groups to be too scattered and not enough of
the neighbourhood is being covered by the groups. Figure 2a shows
a neighbouring solution where all variables in the differing subset
are related to each other and so it is able to reach the absolute limit
of the possible neighbourhood boundary. Due to the nature of the
initial solution construction heuristic, and the random swaps of
the local search, the blocks are not mined in very large chunks; so
when swapping between periods, you end up with much smaller
‘triangles’ of variables (Figure 8). Summed together the areas of
these triangles will equal the area of one of the big triangles in
Figure 2a, however when merged, they cover a much smaller area
of the entire neighbourhood.

5.2 Problem reduction

Table 3 gives the difference in size between the original problem
instance and the reduced sub-problem produced by the merge oper-
ation, for ParallelMerge and ImprovedMerge. The table gives the
number of variables in the original problem, the number of vari-
ables in each of the respective reduced sub-problems, the number
of variables covered by the groups in the reduced sub-problem for
ImprovedMerge and the amount of variables covered as a percent-
age of the original value.

This table shows that the size of the reduced sub-problem is
orders of magnitude smaller for ImprovedMerge than it is for
ParallelMerge. It also shows that ImprovedMerge is able to find
better quality solutions despite the fact that the number of vari-
ables effectively being covered is smaller than ParallelMerge. This
is likely because of the improvements made to the local search
heuristic, where it is being more discriminate about which vari-
ables are included in the reduced sub-problem; so, even though
there are fewer variables being covered, those variables are more
likely to have an improving effect on the solution to the reduced
sub-problem.
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Table 3: Difference in problem size between the original and
the reduced sub-problem produced by the merge operation.

Instance Original  ParallelMerge ImprovedMerge
Reduced % Reduced Covered %
newman1 6.36E+03 1.16E+03 18.2 598E+02 1.27E+03 19.9
zuck_small 1.88E+05 1.50E+04 8.0 7.55E+02 1.98E+03 1.1
kd 1.70E+05 1.42E+04 8.4 7.07E+02 3.37E+03 2.0
zuck_medium 4.49E+05 3.99E+04 9.1 1.74E+03 9.41E+03 2.1
marvin 1.07E+06 1.38E+04 1.3 6.52E+02 1.90E+03 0.2
zuck_large 2.90E+06 1.88E+05 6.5 5.31E+02 1.65E+03 0.06

6 CONCLUSIONS AND FUTURE WORK

Open-pit mining problems contain many variables and constraints,
making them difficult to solve with conventional MIP solvers. Meta-
heuristics are adept at decomposing large problems and obtaining
feasible solutions in a reasonable amount of time; however the
quality of these solutions is not guaranteed. Hybrid meta-heuristics
attempt to mitigate these factors by harnessing the strengths of
both types of algorithms.

This paper presented one such hybrid meta-heuristic called
ImprovedMerge; a merge search algorithm that extends the work
in [12] but with improved population generation and variable aggre-
gation heuristics. Unlike the work in [12], ImprovedMerge ensures
the population comprises only solutions that are likely to improve
the over-all quality of the search. This is done by updating its ini-
tial seed solution as, and when, it finds a better quality candidate
solution; and discarding the candidate otherwise. The variable ag-
gregation heuristic helped to reduce the size of the sub-problem
even further by grouping together sets of variables that agreed
across the whole population, and treating them as a single variable.

ImprovedMerge was compared against ParallelMerge on the
well-known minelib dataset. In all instances it was shown to produce
better quality solutions, in less time than ParallelMerge and it was
also shown to beat the published minelib results in all but one of
the 6 instances. There is still a significant gap between the objective
value found and the LP upper bound and investigations into the
amount the problem is reduced by the algorithm suggests that more
of the search space could be considered by increasing the size of
the neighbourhood used to generate the reduced sub-problem.

Future work in this direction could focus on finding a method of
further aggregating groups or by having a mechanism to control
the size of the groups that are included in the reduced sub-problem.
Larger groups would allow for a larger neighbourhood to be ex-
plored without significantly slowing the search down by having
to include more variables. Once the problem has been solved with
larger groups, the groups at the boundaries could be further disag-
gregated to allow for a finer granularity in the search.
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