Automatic Decomposition of Mixed Integer Programs for
Lagrangian Relaxation Using a Multiobjective Approach

Jake Weiner
RMIT Univeristy
Melbourne, Australia

Xiaodong Li
RMIT University
Melbourne, Australia

ABSTRACT

This paper presents a new method to automatically decompose
general Mixed Integer Programs (MIPs). To do so, we represent the
constraint matrix for a general MIP problem as a hypergraph and
relax constraints by removing hyperedges from the hypergraph. A
Breadth First Search algorithm is used to identify the individual
partitions that now exist and the resulting decomposed problem.
We propose that good decompositions have both a small number of
constraints relaxed and small subproblems in terms of the number
of variables they contain. We use the multiobjective Nondominated
Sorting Genetic Algorithm II (NSGA-II) to create decompositions
which minimize both the size of the subproblems and the number
of constraints relaxed. We show through our experiments the types
of decompositions our approach generates and test empirically
the effectiveness of these decompositions in producing bounds
when used in a Lagrangian Relaxation framework. The results
demonstrate that the bounds generated by our decompositions
are significantly better than those attained by solving the Linear
Programming relaxation, as well as the bounds found via random
and greedy constraint relaxation and decomposition generation.

CCS CONCEPTS

« Mathematics of computing — Combinatorial optimization;
+ Computing methodologies — Heuristic function construc-
tion; » Applied computing — Operations research;

KEYWORDS

Heuristics, Multi-Objective Optimization, Combinatorial Optimiza-
tion

ACM Reference Format:

Jake Weiner, Andreas Ernst, Xiaodong Li, and Yuan Sun. 2020. Automatic
Decomposition of Mixed Integer Programs for Lagrangian Relaxation Us-
ing a Multiobjective Approach. In Genetic and Evolutionary Computation
Conference (GECCO °20), July 8-12, 2020, Canciin, Mexico. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3377930.3390233

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GECCO 20, July 8-12, 2020, Canciin, Mexico

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7128-5/20/07...$15.00
https://doi.org/10.1145/3377930.3390233

263

Andreas Ernst
Monash University
Melbourne, Australia

Yuan Sun
RMIT University
Melbourne, Australia

1 INTRODUCTION

As problem sizes within the Operations Reasearch (OR) community
have grown over the years, new solution techniques have emerged
to keep up with the increased complexity. Evidence for this con-
tinual increase in problem size can be seen in the commonly used
benchmark problem set MIPLIB [19]. The largest problem size, in
terms of the number of variables, is 204,480 variables for the MI-
PLIB 2003 dataset. This is in contrast to the MIPLIB 2017 dataset in
which the largest instance contains 1,429,098 variables.

Given the non-linear time complexity of exact methods for in-
teger programs, this increase in problem size cannot be tackled
simply by increases in computer processing power. As a result, a
number of both problem reduction and problem decomposition
techniques have been established in recent years.

Problem reduction techniques, such as the popular Generate and
Solve (GS) framework [20] on which many more recent approaches
are based [5, 6, 17], aim to reduce the original problem size in an
effort to find good feasible solutions. However, these problem re-
duction techniques do not attempt to find high quality bounds.
Decomposition techniques, most prominently Benders Decompo-
sition (BD), Dantzig Wolfe Reformulation (DWR) and Lagrangian
Relaxation (LR), are all able to generate linear programming based
relaxation bounds. In this paper, our focus is on decomposition
based techniques, with the only goal being to produce high quality
bounds.

The most popular decomposition techniques, BD [15], DWR
[3] and LR [16] have existed for many years and have been ap-
plied to numerous problems. In general, these methods are only
applied to problems whose constraint matrix is known to lend it-
self to decomposition. Examples of such problems which display
these special structures include the Vehicle Routing Problem [21],
Resource Constrained Machine Scheduling problem [13] and the
Facility Location problem [23]. For BD, a set of complicating vari-
ables must be identified and fixed, resulting in the decomposition
of the original problem into a master problem and one or more
subproblems, each of which can be solved more efficiently than the
original problem. Similarly, in DWR, by identifying and separating
out a set of complicating constraints, a master problem is able to
be generated which can then be solved iteratively with additional
variables (columns) generated by solving subproblems. Finally, LR
also removes any identified complicating constraints from the con-
straint matrix via a penalisation method. As with DWR, if the right
constraints are chosen, then the constraint matrix decomposes into
multiple independent subproblems which are able to be solved

https://doi.org/10.1145/3377930.3390233
https://doi.org/10.1145/3377930.3390233

GECCO ’20, July 8-12, 2020, Canciin, Mexico

much more efficiently than the original problem. What all three
methods have in common is the requirement for user input to de-
termine either what variables are the complicating variables, or
what constraints are the complicating constraints.

Ideally, for many applications, it would be advantageous to be
able to automatically identify what constraints or variables are
complicating and as a result create a decomposition without any
user input. This would allow these decomposition techniques to
be applied to a wider variety of problems that may not display an
obvious structure for these decomposition techniques. It would also
make these techniques more widely accessible, with practitioners
being able to implement them without having in depth domain
specific knowledge about the problem.

Whilst the idea of creating an automatic method to solve a prob-
lem via a decomposition technique seems like a reasonable one,
until recently, there has been only limited work carried out in this
area. With regards to DWR, there have been a number of software
tools created which automate the DWR framework, such as BaP-
Cod [24], DIP [22] and GCG [14]. However these frameworks all
still require the user to provide the necessary diagonal block struc-
ture of the problem’s constraint matrix. Automatic detection of a
good decomposition has been treated as an optimization problem
[7, 8, 12], however this optimization problem is NP-hard and is
often just as difficult as solving the original problem.

More recently and most relevant to our work, a study was car-
ried out in [3] to empirically analyse and test different problem
decompositions which could be automatically generated and solved
within a DWR framework. In [3], the authors follow previous works
[1] [12] and represent the original constraint matrix as a hyper-
graph, after which they solve the k-way partitioning algorithm.
This partitioning algorithm attempts to find partitions that exist
within the hypergraph, linked via as few hyperedges as possible. If
these hyperedges are removed, separate, individual partitions now
exist, forming the block structure required by the DWR algorithm.
One drawback of creating decompositions this way is that it still
requires the user to provide the number of blocks as a parameter
for the partitioning algorithm used. The number of partitions re-
quired to be identified is a significant factor in determining the
quality of the decomposition produced. Without a clear indication
of what this parameter should be, a suitable decomposition might
be unattainable.

Lastly, it should be noted that a new machine learning approach
has been proposed to ascertain the suitability of whether or not
decomposition is likely to be effective for a problem, in this case
within a DWR framework [18]. This line of research could be very
beneficial, as even if good automatic decomposition techniques
exist, for some problems there might just not exist any good de-
compositions.

In this paper, we attempt to create good decompositions for gen-
eral MIP problems without any domain-specific user input. We
propose that minimising the size of the largest subproblem and the
number of constraints relaxed defines a good decomposition. To find
these good decompositions, we use the well known Nondominated
Sorting Genetic Algorithm IT (NSGA-II) [11]. After running the
NSGA-II algorithm, selected elite decompositions are then solved
within a LR framework to produce problem bounds. We present

264

Jake Weiner, Andreas Ernst, Xiaodong Li, and Yuan Sun

C; C; C3C4 Cs
111100
011000
001110
000111

Cs

R1

Rz

Figure 1: Hypergraph Representation of a Matrix. Rows
R; of a matrix can be represented as hyperedges E; and
columns C; can be represented as nodes N;.

the bounds found for a number of different decompositions us-
ing instances from the MIPLIB 2017 library, and benchmark these
against the Linear Programming (LP) relaxations found by the com-
mercial MIP solver - CPLEX. We also provide some preliminary
analysis into the decompositions that are able to be found and the
bound characteristics these decompositions produce within a LR
framework.

The rest of this paper is structured as follows. Section 2 intro-
duces the background and related work. Our main approach is
described in Section 3. Section 4 details the experimental design
and presents the results. Section 5 then concludes the paper.

2 BACKGROUND AND RELATED WORK

In this section we describe hypergraph-matrix transformations,
Lagrangian Relaxation and the Nondominated Sorting Genetic Al-

gorithm 11 (NSGA-II).

2.1 Hypergraph-Matrix Transformations

Matrix decomposition and partitioning is an important task for
many different application areas including Very Large Scale In-
tegration (VLSI), parallel sparse-matrix vector multiplication and
sparse-matrix reordering [9]. As such, there has been significant
work done on matrix decomposition, with a common approach be-
ing to represent a matrix as a hypergraph and then run a hypergraph
partitioning algorithm, where each partition represents a different
matrix block of the decomposition. A Hypergraph, H = (N, E)
is defined as a set of nodes N and hyperedges E such that each
hyperedge e; € E forms a link between a subset of nodes e; C N.
This is in contrast to a normal graph, where edges link only node
pairs. Representing a matrix as a hypergraph can be carried out
in numerous ways, however in most applications hyperedges are
defined in terms of the non-zero elements of rows with columns
as nodes. An example of such a conversion between a matrix and
hypergraph can be seen in Fig 1.

2.2 Lagrangian Relaxation

Lagrangian Relaxation (LR), is an exact technique that is commonly
implemented in the Operations Research (OR) community. LR arose
from the observation that some hard problems can be modelled as

Automated Decomposition of MIPs for Lagrangian Relaxation

Dy Y
D, Y2

Ds Ys

D Yx

A Ay As A G

Figure 2: Double Arrowhead Matrix Structure. Decomposed
subproblems D; contain independent variables and can be
solved independently if the complicating variables Y, and
the complicating constraints A; are removed.

relatively easy problems with complicating constraints. For prob-
lems of this nature, if these constraints were removed, the original
problem would decompose into multiple subproblems which would
be much easier to solve. Problems which are suitable for LR display
angular constraint matrices as seen in Fig 2. In this angular con-
straint matrix, often referred to as a Double Arrow Matrix Structure,
there are complicating constraints Ay, complicating variables Y
and independent block structures Dy. If these complicating con-
straints and variables were removed, the problem could be decom-
posed and all subproblems could be solved independently and more
efficiently than the original problem as a whole.

LR is carried out by relaxing some of the constraints in a Mixed
Integer Programming problem and shifting them to the objective
function, with some penalty term (Lagrangian Multiplier) attached.
A basic implementation of how LR is applied to a standard Mixed
Integer Programming problem can be seen in Eq’s (1)-(2). Solving
the new relaxed problem provides bounds on the best objective
value achievable in the original problem. In many cases finding
the optimal Lagrangian Multipliers and the tightest bounds are the
main objective when solving the relaxed problem. However, finding
the optimal Lagrangian Multipliers can also result in finding good
feasible solutions, as LR is essentially a penalty method.

mxin f(x)=cx st Ax =D x € {0,1} (1)
1/11133(LR(A) =m}3n cx+ A (b - Ax) x € {0,1} 2)

Whilst there are many techniques available to find the optimal
Lagrangian Multipliers, traditionally the most popular method has
been sub-gradient optimization [10]. The Lagrangian function is
non-smooth. While a gradient may not exist, the function always
has a set of subgradients corresponding to the normal vectors of a
set of supporting hyperplanes at a point on the function’s level set.
Subgradient optimization uses an arbitrarily chosen subgradient
of the Lagrangian function with respect to the current Lagrangian
Multipliers, as a search direction to update the Multipliers. A sub-
gradient is given by the constraint violation b — Ax, as can be seen
in Eq. (2), with alternative subgradients corresponding to different
optimal subproblem solutions when there are multiple optima. Fol-
lowing the direction of the subgradient modifies the penalties such
that it encourages more feasible solutions. Penalties are increased

265

GECCO ’20, July 8-12, 2020, Canciin, Mexico

where the constraints are violated, and decreased where there is
slack in the constraint.

2.3 NSGA-II

As the search space for potential decompositions is large (see Sec-
tion 3.1), using a population based multiobjective algorithm allows
us to test more decompositions in an effort to find the “good” de-
compositions. Whilst we recognise that the NSGA-II [11] algorithm
is only one of many multiobjective algorithms that we could have
used in this paper, we have chosen NSGA-II because it is a well
established population based multiobjective algorithm.

The NSGA-II algorithm has a time complexity of O(MN?) for
its nondominated sorting, where M is the number of objectives
and N is the population size. Each iteration of NSGA-II consists of
four operations: 1) offspring creation 2) nondominated sorting, 3)
crowding-distance assignment and 4) sorting on both domination
count and crowding distances.

Offspring creation in NSGA-II is carried out using a standard
binary tournament selection, recombination, and mutation process.
At this point there are 2N individuals in the population. A fast
nondominated sorting approach is then carried out. This is done
by creating two measures for each individual in the population: 1)
a domination count n, which represents the number of members
in the population which dominate this individual and 2) a set of
solutions that this individual dominates, Sp. For individuals in the
first nondominated front, their domination count np is set to 0, and
each member of the individuals that it dominates has their domi-
nation count reduced by 1. After this first round, each individual
which now has a domination count of 0 is identified as belonging
to the second nondominated front. This same process is repeated
for each of the individuals in the second nondominated front to
identify any other fronts which may exist.

Once the nondominated sorting process is completed, the top
50% of individuals are selected for the new generation. If there are
multiple individuals in the same front which could be added to the
next generation, a crowding distance metric is used to select indi-
viduals which are more isolated within the front, to help maintain
diversity amongst the population. The crowding distance metric is
calculated by sorting the population according to each normalised
objective value and calculating the distance to the two adjacent
solutions.

3 APPROACH

Our approach in this paper consists of three main tasks:

(1) Creating decompositions via constraint relaxation and hy-
pergraph partitioning detection

(2) Improving decompositions using the NSGA-II algorithm

(3) Establishing MIP bounds by using decompositions within a
LR framework

Determining the partition for a particular set of relaxed constraints
is relatively straight forward. Hence we focus our description of the
approach on how the quality of a relaxation should be measured in
the genetic algorithm. We also describe briefly how the resulting
decomposition is used with the Lagrangian relaxation algorithm.

GECCO ’20, July 8-12, 2020, Canciin, Mexico

3.1 Decomposition creation

In general, if a decomposition technique is used to solve a MIP,
most practitioners recognise that having smaller independent sub-
problems and fewer global constraints within a constraint matrix
would likely result in better performances [23]. However, the spe-
cific structure of the independent subproblems could also be crucial
to performance. At this stage, without knowing what constitutes
an optimal decomposition, we have identified two critical factors
which in theory would affect the performance of a decomposition
in a LR framework. These factors are: 1) the number of constraints
relaxed and 2) the size of the largest subproblem within the de-
composition. When more constraints are relaxed, the number of
Lagrangian Multipliers are increased, requiring more iterations of
the LR algorithm to find the optimal Multiplier values. Additionally,
the subproblems are farther removed from the original problem,
changing the search space and ultimately the quality of the bounds
that could be found. The size of the largest subproblem should also
in theory be as small as possible. This is because the smaller the
size of the subproblems, the easier they should be to solve, making
it possible to run more LR iterations in the same amount of time.
However, because we are making no use of any problem domain
knowledge, this might not always be the case.

There is an obvious trade-off that exists when minimising both
of these objectives. When more constraints are relaxed, this cre-
ates more decomposable blocks within the problem structure, and
therefore the largest subproblem size decreases as well. Conversely,
fewer constraints relaxed will likely result in both fewer and larger
subproblems. Therefore we attempt to minimise both of these ob-
jectives using the multi-objective algorithm NSGA-II to search for a
set of Pareto-optimal solutions, which represent different possible
decompositions.

To create a feasible decomposition, we first translate the con-
straint matrix of the MIP problem tested to a hypergraph. Rows
within the matrix are represented by hyperedges, whilst the columns
form the nodes within the hypergraph. Once our hypergraph is
created, we set up the NSGA-II algorithm to find different possible
decompositions. In our NSGA-II we aim to minimise both the num-
ber of constraints relaxed and the size of the largest subproblem.
Each individual solution within the NSGA-II algorithm consists of
a binary string of size |E|, where |E| represents the number of con-
straints the original MIP constraint matrix contains. If gene e; € E
is set to 1, edge i is removed from the hypergraph, which represents
the relaxation of a constraint. In this sense, the size of the search
space of feasible solutions is O(2/El). Using a Breadth First Search
(BFS) algorithm on the hypergraph once all relaxed constraints
are removed, we are able to identify the independent components
of the remaining graph. The BFS algorithm theoretically requires
O(|N| x |E|) time, where N is the number of nodes (variables) and
E is the number of hyperedges (constraints). However in practice it
only needs O(nz) where nz is the number of non-zero entries in
the constraint coefficient matrix with nz < |N| X |E|. The fitness
function for each individual is represented by two objectives: 1)
the number of constraints relaxed and 2) the size of the largest
subproblem. The first objective is calculated as the sum of each

chromosome 3, e; and the second objective the number of nodes
i€|E|

266

Jake Weiner, Andreas Ernst, Xiaodong Li, and Yuan Sun

n in the largest partition Nj. amongst all partitions K max 3, n;.
k€K je|Ng|

The population is seeded with greedy-random solutions, based on
the intuition that relaxing constraints with the most number of
variables (non-zero coefficients) should lead to more and smaller
subproblems. An arbitrary number of individuals are initialised
with varying numbers of constraints relaxed, from 5% to 99% of the
total numbers of constraints. Constraints to be relaxed are chosen
in a probabilistic manner. First, constraints are sorted according to
the number of variables they contain, then they are iterated over
with a probability of being relaxed

pi = % X Q X |C|, where p; is the probability of constraint i
being relaxed, V; is the set of variables contained in constraint i,
V is the set of variables in the original problem, Q is the desired
proportion of constraints to be relaxed and C is the set of constraints
in the original problem. This iterative loop is continued until the
desired proportion of constraints has been selected for relaxation.

3.2 Lagrangian Relaxation

For the decomposition chosen, the relaxed constraints are moved
from the constraint matrix to the objective function with penalties
(Lagrangian Multipliers) attached, as seen in Eq’s (1)-(2). Whilst
Eq’s (1)-(2) only depict greater than or equal to constraints, the
same process applies for both equality and less than or equal to
constraints. For less than or equal to constraints, the Lagrangian
Multipliers have an upper bound of 0 (A < 0) and for equality
constraints there are no bounds put on the Lagrangian multiplers
(A € R). Maximisation problems can also be accommodated with a
corresponding change of sign for the Lagrangian Multipliers.

Each partition found in the decomposition, consisting of nodes
and hyperedges representing variables and constraints respectively,
can be solved as an independent subproblem. Solving all subprob-
lems to optimality provides the violation array used to update the
Lagrangian Multipliers, as well as the variable values used in the
master problem to generate a valid lower bound. Each subproblem
is solved to optimality using a standard commerical MIP solver
(CPLEX). Due to the relaxation of constraints and consequential
removal of hyperedges, there may exist subproblems which contain
only one variable. For these subproblems, they can be solved to
optimality using the variable bounds instead of creating another
MIP. We use a standard subgradient optimization procedure to up-
date the Lagrangian Multipliers. The full pseudocode for the LR
framework used can be seen in Algorithm 1.

It is worth noting that the subgradient optimization algorithm,
while having some theoretical convergence properties as the num-
ber of iterations goes to infinity, is not guaranteed to find an optimal
solution within a fixed number of iterations. It is also not neces-
sary that the Lagrangian objective value improves in each iteration
which motivates the reduction in step size in Step 9 of Algorithm 1.
Hence in the results that we report, we only consider the best value
so far at each iteration.

4 EXPERIMENTS AND RESULTS

Experiments were carried out to explore what decompositions were
able to be found via hypergraph partitioning and NSGA-II, the
bounds found using these decompositions within a LR framework,

Automated Decomposition of MIPs for Lagrangian Relaxation

Algorithm 1 LR Algorithm

Require: a®, B, UB, n. The initial value, update factor of «, the true UB and the
number of non improving iterations until « is updated.
1: set initial Lagrangian Multipliers A; = 0
2: while CurrentCPU < maxCPU and LB < UB - € do
3: Solve independent subproblems L(A;) // using CPLEX
4: Let x” be the optimal solution to the minimisation subproblem
5: g —b-Ax // update subgradient g
6: if L(A;) > LB then
7 LB « L(A;)
8: else if LB; not improved for n iterations then
9: a; — fa;
end if

Randomly generate number r* € [0, 1]
L, UB-LB;
gz 9

// reduce step size

Ai—r

13: end while

Table 1: Quantitative measures of experimental datasets
[19]. These measures include instance names, total number
of variables, number of binary variables, number of integer
variables, number of continuous variables, number of con-
straints and number of non-zeroes.

Instance [V] Bin Int Con Constraints Non-Zeroes
neos-848589 550539 747 0 549792 1484 1101080
s100 364417 364417 0 0 14733 1777920
$250r10 273142 273139 0 3 10962 1318610
rail02 270869 270869 0 0 95791 756228
neos-787933 236376 236376 0 0 1897 298320
proteindesign121hz512p9 159145 159054 91 0 301 629449
bab6 114240 114240 0 0O 29904 1283180
thor50dday 106261 53131 0 53130 53360 212060

what makes some decompositions better than others and how do
these bounds compare to standard Linear Programming bounds.

A variety of the largest instances from the MIPLIB 2017 dataset
[19] were used for all experiments. The characteristics for each
instance can be seen in Table 1.

Hypergraph partitioning and NSGA-II algorithms were run on
an Intel i7-7500U CPU and all LR tests were carried out on the Multi-
modal Australian ScienceS Imaging and Visualisation Environment
(MASSIVE) network, which runs on an Intel Xeon CPU E5-2680 v3
processor. CPLEX 12.8.0 was used to solve all MIP subproblems and
LP benchmarks. AIl LR and LP tests were run with a limited runtime
of 300 CPU seconds. The inital step size parameter a°, the update
factor f and the threshold of non improving iterations n in the
LR algorithm used were set to values of 2, 0.6 and 10 respectively.
The NSGA-II algorithm was run using the Pagmo framework [4]
with default parameter settings. These settings include: Crossover
Probability = 0.95, Distribution index for Crossover = 10.0, Mutation
Probability = 0.01, Distribution index for Mutation = 50.0. The
NSGA-II algorithm was run once for every instance tested, using 30
generations with population sizes set to either 24 or 36, arbitrarily
chosen based on processing time considerations.

4.1 Decompositions Found

Fig 3 shows the Pareto front of decompositions found after the
completion of the NSGA-II algorithm for the neos-787933 instance.
Whilst the NSGA-II was not necessarily run to convergence due
to practical time constraints, we can already see a clear picture be-
tween the trade-off that exists between minimising both the largest

267

GECCO ’20, July 8-12, 2020, Canciin, Mexico

0.9
0.8
0.7
0.6
0.5 —@— ncos-787933
0.4
0.3

0.2

e

Size of the Largest Subproblem

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Number of Constraints Relaxed

Figure 3: NSGA-II Decomposition Plot for the Neos-787933
problem. The number of constraints relaxed are given as a
proportion of the total constraints in the original problem.
Similarly the size of the largest subproblem is given as a pro-
portion of the number of variables in the original problem.

subproblem and the number of constraints relaxed. The Pareto-front
approximation is non-convex which may be an indication that the
final generation is not yet Pareto optimal, or an inherent feature due
to the combinatorial nature of the decomposition problem. There is
a sharp drop in Fig 3 with significantly smaller subproblems being
able to be generated without relaxing too many constraints. This
perhaps is a key indicator that this particular problem is suitable
for decomposition.

4.2 Different Decomposition Bound
Characteristics

Fig 4 shows the bounds produced by some of the different decom-
positions after the completion of one full run of the LR algorithm.
When solving a MIP, generally the smaller the number of variables
and constraints involved, the easier it is to solve. For decompo-
sitions with smaller subproblems, this should translate to more
iterations of LR to be run within the limited runtime, potentially
leading to tighter bounds. This can be seen in Fig 4(b), where more
iterations of the LR directly results in better bounds found. How-
ever, as also seen in Fig 4(b), smaller subproblems do not always
correlate with more LR iterations. The structure of the individual
MIP subproblems is also a significant factor in the time taken to
solve them, with the structure affecting many solving techniques
implemented by most modern solvers, such as pre-solving and cut
generation. Hence, measuring problem hardness using a simplistic
measure such as the number of variables can be misleading for
predicting the actual solve time required.

Interestingly, if the LR algorithm is able to be solved to optimality
within the runtime limit, or converges prematurely, having smaller
subproblems and therefore more LR iterations might not neces-
sarily be beneficial. Whilst solving larger subproblems with fewer
constraints relaxed may result in fewer iterations of the LR algo-
rithm, these subproblems can better represent the original problem,
and have the ability to produce better bounds. As seen in Fig 4(a),
the most dominant factor in the quality of bound produced is how
closely the subproblems represent the original problem, rather than

GECCO ’20, July 8-12, 2020, Canciin, Mexico

100
-0.5
2 s
= ——e— LSP-9799: CR - 16583
‘:8 et LSP - 22348 : CR - 14590
;_‘ . CR-
D 25 LSP - 45498 : CR - 6053
53 ——— LSP- 73880 : CR - 3499
Q
—
-3.5 e
—
— il
-4.5
0 50 100 150 200

No. of Iterations
(a) bab6

Lower Bound

250

Jake Weiner, Andreas Ernst, Xiaodong Li, and Yuan Sun

—1,000

—2,000

—3,000 ——e—— LSP - 50533 : CR - 57769
——e—— LSP - 78750 : CR - 43376
LSP - 98802 : CR - 37354

—4,000
———— LSP - 109551 : CR - 33417

—5,000

40 60 80 100 120 140 160

No. of Iterations
(b) railo2

Figure 4: LB Decomposition Comparisons. For each decomposition, LSP is the number of variables within the Largest Subprob-
lem and CR is the number of constraints relaxed to create the decomposition.

Table 2: Summary of the optimization gaps produced by the
different NSGA-II Decompositions tested.

Instance Best Gap (%) Worst Gap (%) Mean Gap (%) Stddev (%)
neos-848589 85.44 100.00 98.06 4.45

5100 4790.60 17130.43 11911.81 4257.15
s250r10 1839.05 4203.42 2661.30 1017.67
rail02 116.05 1038.05 575.17 301.13
proteindesign121hz512p9 23.83 99.66 71.44 31.96

bab6 193.36 1380.47 888.36 399.93
thor50dday 100.00 100.00 100.00 0.00
neos-787933 76.67 100.00 81.46 6.52

the number of LR iterations run. Here, if critical constraints are
relaxed, solutions to the subproblems can not produce high quality
bounds, as the structure of the subproblems is too far removed
from the original. At this stage, there is no clear indication as to
which of the NSGA-II decompositions produce the best quality
bounds. Depending on the instance and the given run-time limit,
sometimes relaxing more constraints leads to better quality bounds
and sometimes relaxing fewer constraints leads to better quality
bounds. More work needs to be carried out to see if a clear indicator
exists which could evaluate the potential NSGA-II decompositions
without solving the full LR.

4.3 Bound Benchmarking

To determine whether the NSGA-II approach has managed to find
a “good” decomposition that can generate good bounds is not easy.
Firstly there is the question of how the decomposition is used as
there are many variants of Lagrangian subgradient optimization
methods and parameters that could be tuned to get the best bound
for a given decomposition. As the purpose of this study is to de-
termine the viability of the approach, the LR algorithm used was
not heavily tuned nor were more sophisticated approaches tried
such as the Volume Algorithm [2]. Also, the NSGA-II method of
course produces many different decompositions for each problem.

268

Trying all of them would be computationally prohibitive, while ar-
bitrarily trying one might produce some particularly bad results if
the subproblems for that particular decomposition are structurally
difficult to solve. Hence, as we do not yet have a good rule for de-
termining which of the decompositions found is best, we sampled
the Pareto front by running the LR algorithm once for 10 different
decompositions (if such decompositions were found) which met
specified largest subproblem sizes, ranging from values between 1%
to 90% of the original problem. A summary of the bound qualities
produced by the different NSGA-II decompositions tested can be
seen in Table 2. In Table 2 we present the bound qualities as opti-
mization gap percentages, which are calculated as | U%_BLB | * 100,
where UB is the true upper bound as stated on MIPLIB and LB is
the lower bound found by the LR algorithm for the decomposition
tested.

The next question is what comparisons should be used for bench-
marking the quality of the bounds. The aim is to replace manually
created decompositions, but for the general test instances used
here there are no known “good” decompositions to the best of our
knowledge. Instead we benchmark the bounds found by the best
NSGA-II decomposition against the LP solution, a random con-
straint selected decomposition and a greedy constraint selected
decomposition. For both random and greedy decompositions, the
same number of constraints are relaxed as in the best NSGA-II de-
composition found. For the random decompositions, the constraints
relaxed are randomly selected. For the greedy decompositions, the
largest constraints are relaxed. The results for these experiments
can be seen in Table 3. For the random decompositions, 20 differ-
ent sets of constraints were tested to account for the randomness
of the constraints selected. The results presented for the random
decomposition in Table 3 represent the average bound and largest
subproblem sizes found amongst these 20 different decompositions.

As can be seen in Table 3, the NSGA decompositions produced
the best quality bounds for 5 out of the 8 instances tested. There
is a correlation between relaxing larger constraints and having
smaller largest subproblems as can be seen when comparing the

Automated Decomposition of MIPs for Lagrangian Relaxation

GECCO ’20, July 8-12, 2020, Canciin, Mexico

Table 3: Comparison of gaps produced by CPLEX, Random Decomposition, Greedy Decomposition and the best NSGA-II De-
compositions tested. The best (smallest) gaps are bolded. The Constraints column shows the total number of constraints in the
original problem, with CR representing the number of constraints relaxed for the Rand, Greedy and NSGA decompositions.
For all decompositions tested, the largest subproblem (LSP) is presented, given as a proportion of the number of variables
in the original instance. For the Rand decompositions, the results shown are an average of the 20 runs carried out. Results
denoted as * indicate no valid bounds produced as solutions to the subproblems exceeded the CPU runtime limit.

Instance Constraints CR Rand LSP Greedy LSP NSGA LSP CPLEX % Rand % Greedy % NSGA %
neos-848589 1484 495 0.89 1.00 0.90 100.00 91.27 100.00 85.44
5100 14733 10024 0.84 0.09 0.09 743421.37 10703.57 6936.50 4790.60
5250r10 10962 878 1.00 0.52 0.46 248329.37 457.91 2866.07 1839.05
rail02 95791 43376 0.79 0.02 0.29 2909.79 126.84 125.31 116.05
proteindesign121hz512p9 301 43 1.00 1.00 0.89 99.65 37.16 46.87 23.83
bab6 29904 3499 0.99 0.02 0.65 1483.21 * 1339.89 193.36
thor50dday 53360 3555 0.96 1.88 x107° 0.06 99.98 100.00 100.00 100.00
neos-787933 1897 301 0.88 0.68 0.08 90.00 85.07 58.33 76.67

largest subproblem sizes of the random decompositions and the
greedy decompositions. However, constraint size is not the only
factor, as the NSGA-II decompositions often have largest subprob-
lem sizes similiar to or less than the greedy decompositions. As
discussed previously, there is also evidence that there are more
factors than simply the largest subproblem size which influence the
bound quality a particular decomposition is able to produce. Whilst
the greedy decompositions often have the smallest largest subprob-
lem, the bounds produced by these decompositions are often worse
than the NSGA-II decompositions. This could be attributed to the
fact that the NSGA-II decompositions do not rely on only relaxing
the largest (and perhaps most influential) constraints to achieve
smaller subproblems. As noted in Section 4.2, the more the orig-
inal problem is relaxed, the less likely it is that even the optimal
Lagrangian Multipliers can produce good quality bounds. Almost
all decomposition based methods produced better bounds than the
LP solution found by CPLEX. The LP bounds strictly represent the
LP solution without any cut generation techniques applied. There
is some slight randomness in the LR algorithm used, with a random
factor included in the Lagrangian Multiplier update step. However,
this should not significantly affect bound qualities between runs.

Whilst at this stage, there is no clear indication as to which of
the NSGA-II decompositions will produce the best quality bounds
without testing all of them, we can see that effective decompositions
can be found for arbitrary MIPs, without any user input.

5 CONCLUSIONS

This paper presented a novel approach to automatically generate
decompositions for arbitrary MIPs. Decompositions were gener-
ated via hypergraph partition detection and optimised using the
Nondominated Sorting Genetic Algorithm II (NSGA-II). We have
shown the different decompositions able to be generated, the bound
qualities of these decompositions when used in a Lagrangian Re-
laxation (LR) framework, and benchmarked the bound qualities of
these decompositions against the Linear Programming (LP) bound.
We have demonstrated the effectiveness of using a multiobjective

269

optimization algorithm such as NSGA-II has on creating good de-
compositions, by comparing the NSGA-II decompositions with
both random and greedy methods. This paper does not provide a
complete and finished automated decomposition detection scheme.
Instead we demonstrate that effective decompositions can be found
for arbitrary MIPs, without any domain specific knowledge or ex-
pert input. We have not yet considered the computational efficiency
of finding good decompositions which is left to future research.

Further insight is also required as to what makes a decomposition
good or bad so that from the population of potential decompositions,
the most promising decomposition can be selected with reasonable
confidence. Future work may look into performing a single iteration
of LR for several decompositions first, gauging the bound quality
produced and CPU time required to predict which relaxations are
better than others, without having to run the LR algorithm to com-
pletion. In addition, looking at other selection rules besides largest
subproblem sizes and the number of constraints relaxed are likely
to improve the performance of LR. Future work may also consider
individual constraint characteristics and the number of non-zeroes
contained within independent subproblems as key performance
indicators.

6 ACKNOWLEDGEMENTS

This research was supported by an ARC (Australian Research Coun-
cil) Discovery Grant (DP190101271)

REFERENCES

[1] Cevdet Aykanat, Ali Pinar, and Umit V. Catalyiirek. 2004. Permuting sparse rect-
angular matrices into block-diagonal form. STAM Journal on Scientific Computing
25, 6 (2004), 1860-1879. https://doi.org/10.1137/S1064827502401953

Francisco Barahona and Ranga Anbil. 2000. The volume algorithm: producing
primal solutions with a subgradient method. Mathematical Programming 87, 3
(2000), 385-399. https://doi.org/10.1007/s101070050002

Martin Bergner, Alberto Caprara, Alberto Ceselli, Fabio Furini, Marco E Liibbecke,
Enrico Malaguti, and Emiliano Traversi. 2015. Automatic Dantzig-Wolfe refor-
mulation of mixed integer programs. Mathematical Programming 149, 1-2 (2015),
391-424.

Francesco Biscani and Dario Izzo. 2019. esa/pagmo2: pagmo 2.11.4. (sep 2019).
https://doi.org/10.5281/ZENODO.3464510

Christian Blum and Jordi Pereira. 2016. Extension of the CMSA algorithm: An
LP-based way for reducing sub-instances. GECCO 2016 - Proceedings of the

https://doi.org/10.1137/S1064827502401953
https://doi.org/10.1007/s101070050002
https://doi.org/10.5281/ZENODO.3464510

GECCO ’20, July 8-12, 2020, Canciin, Mexico Jake Weiner, Andreas Ernst, Xiaodong Li, and Yuan Sun

2016 Genetic and Evolutionary Computation Conference (2016), 285-292. https: on Experimental Algorithms. Springer, 239-252.

//doi.org/10.1145/2908812.2908830 [15] Arthur M Geoffrion. 1972. Generalized benders decomposition. Journal of
[6] Christian Blum, Pedro Pinacho, Manuel Lopez-Ibafiez, and José A. Lozano. 2016. optimization theory and applications 10, 4 (1972), 237-260.

Construct, Merge, Solve & Adapt A new general algorithm for combinatorial [16] Arthur M Geoffrion. 1974. Lagrangean relaxation for integer programming. In

optimization. Computers and Operations Research 68 (2016), 75-88. https://doi. Approaches to integer programming. Springer, 82-114.

0rg/10.1016/j.cor.2015.10.014 [17] Angus Kenny, Xiaodong Li, and Andreas T. Ernst. 2018. A merge search algorithm
[7] Ralf Borndérfer, Carlos E Ferreira, and Alexander Martin. 1997. Matrix decompo- and its application to the constrained pit problem in mining. GECCO 2018 -

sition by branch-and-cut. (1997).

Ralf Borndorfer, Carlos E. Ferreira, and Alexander Martin. 1998. Decomposing
matrices into blocks. SIAM Journal on Optimization 9, 1 (1998), 236-269. https:
//doi.org/10.1137/S1052623497318682

Umit Catalyiirek and Cevdet Aykanat. 2011. Patoh (partitioning tool for hyper-
graphs). Encyclopedia of Parallel Computing (2011), 1479-1487.

Ronald G. Cavell. 1975. Core photoelectron spectroscopy of some acetylenic
molecules. Journal of Electron Spectroscopy and Related Phenomena 6, 4 (jan 1975),
281-296. https://doi.org/10.1016/0368-2048(75)80038-7

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions
on Evolutionary Computation 6, 2 (2002), 182-197. https://doi.org/10.1109/4235.
996017

Michael C Ferris and Jeffrey D Horn. 1998. Partitioning mathematical programs
for parallel solution. Mathematical Programming 80, 1 (1998), 35-61.

Marshall L Fisher. 2004. The Lagrangian relaxation method for solving integer
programming problems. Management science 50, 12_supplement (2004), 1861—
1871.

Gerald Gamrath and Marco E Liibbecke. 2010. Experiments with a generic
Dantzig-Wolfe decomposition for integer programs. In International Symposium

Proceedings of the 2018 Genetic and Evolutionary Computation Conference (2018),
316-323. https://doi.org/10.1145/3205455.3205538

Markus Kruber, Marco E Liibbecke, and Axel Parmentier. 2017. Learning When
to Use a Decomposition BT - Integration of Al and OR Techniques in Constraint
Programming, Domenico Salvagnin and Michele Lombardi (Eds.). Springer Inter-
national Publishing, Cham, 202-210.

Miplib2017. 2018. {MIPLIB} 2017. (2018). http://miplib.zib.de

Napoledo V Nepomuceno, Placido R Pinheiro, and André L V Coelho. 2007. Com-
bining metaheuristics and integer linear programming: a hybrid methodology
applied to the container loading problem. In Proceedings of the XX congreso da
sociedade brasileira de computagdo, concurso de teses e dissertacdes. 2028-2032.
Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau, and Walter Rei.
2017. The Benders decomposition algorithm: A literature review. European
Journal of Operational Research 259, 3 (2017), 801-817.

T K Ralphs and M V Galati. 2009. DIP-decomposition for integer programming.
(2009).

[23] James Richard Tebboth. 2001. A computational study of Dantzig-Wolfe decom-

position. University of Buckingham (2001).
Francois Vanderbeck, R Sadykov, and I Tahiri. 2005. BaPCod-a generic branch-
and-price code. See http://wiki. bordeaux. inria. fr/realopt (2005).

https://doi.org/10.1145/2908812.2908830
https://doi.org/10.1145/2908812.2908830
https://doi.org/10.1016/j.cor.2015.10.014
https://doi.org/10.1016/j.cor.2015.10.014
https://doi.org/10.1137/S1052623497318682
https://doi.org/10.1137/S1052623497318682
https://doi.org/10.1016/0368-2048(75)80038-7
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/3205455.3205538
http://miplib.zib.de

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Hypergraph-Matrix Transformations
	2.2 Lagrangian Relaxation
	2.3 NSGA-II

	3 Approach
	3.1 Decomposition creation
	3.2 Lagrangian Relaxation

	4 Experiments and Results
	4.1 Decompositions Found
	4.2 Different Decomposition Bound Characteristics
	4.3 Bound Benchmarking

	5 Conclusions
	6 Acknowledgements
	References

