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Introduction: Large-Scale Continuous Optimization

Large-scale (High-dimensional) Continuous Optimization Problems are
challenging to solve:

- Search space increases exponentially.

- Problem complexity increases greatly.

- The running time of some evolutionary algorithms increases
significantly.
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Background: Cooperative Co-evolution (CC)1
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Limitation of CC: Inefficient to solve problems with imbalanced
components (contributing differently to the overall fitness values).

1Potter M A, De Jong K A. A cooperative coevolutionary approach to function
optimization[C]//International Conference on Parallel Problem Solving from Nature.
Springer, Berlin, Heidelberg, 1994: 249-257.
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Background: Efficient Resource Allocation in CC 2
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2Yang M, Omidvar M N, Li C, et al. Efficient resource allocation in cooperative
co-evolution for large-scale global optimization[J]. IEEE Transactions on Evolutionary
Computation, 2017, 21(4): 493-505.
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CC with Optimizer Selection: Selection Procedures
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2
. (2)

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 6 / 15



CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T ).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9 a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1
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Experimental Methodology

- Decomposition method: Recursive Differential Grouping3 which uses
O
(
n log(n)

)
function evaluations in decomposition.

- Benchmark problems: CEC’2010 benchmark large-scale global
optimization problems.

- CCOS: uses Self-adaptive Differential Evolution with Neighborhood
Search (SaNSDE) and Social-Learning Particle Swarm Optimization
(SL-PSO) as the candidate optimizers.

- CCDE: only uses SaNSDE as the optimizer.

- CCPSO: only uses SL-PSO as the optimizer.

- Statistical test: Wilcoxon rank-sum test with 95% confidence interval.

3Sun Y, Kirley M, Halgamuge S K. A recursive decomposition method for large scale
continuous optimization[J]. IEEE Transactions on Evolutionary Computation, accepted
November 2017.
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Experimental Results: Selection Details of CCOS (f16)
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Experimental Results: Selection Ability of CCOS
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Figure: ρt : the ratio of the number of evolutionary cycles that DE and PSO were
selected; ρy : the ratio of the solution quality generated by CCPSO and CCDE.
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Experimental Results: Selection Ability of CCOS (f8)
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Experimental Results: Comparison with CCDE and CCPSO
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Experimental Results: Comparison with State-of-the-arts

Table: The optimization results of CCOS, CSO, MOS and MA-SW-Chain when
used to solve the CEC’2010 benchmark problems (Wilcoxon rank-sum tests).

Func Stats CCOS CSO MOS MA-SW-Chain

f4
median 1.96e+10 7.26e+11 4.94e+11 3.10e+11
mean 1.95e+10 7.25e+11 5.16e+11 2.97e+11
std 2.23e+09 1.23e+11 1.85e+11 6.19e+10

f7
median 3.94e-13 2.04e+04 2.27e+07 7.94e-03
mean 9.15e-12 2.01e+04 3.54e+07 1.17e+02
std 2.61e-11 3.86e+03 3.22e+07 2.37e+02

f13
median 3.85e+02 5.47e+02 3.19e+02 8.61e+02
mean 4.10e+02 6.29e+02 3.32e+02 9.83e+02
std 1.09e+02 2.32e+02 1.19e+02 5.66e+02

f16
median 1.49e-13 5.75e-08 3.97e+02 9.32e+01
mean 1.88e-01 5.89e-08 3.96e+02 9.95e+01
std 5.53e-01 5.61e-09 3.47e+00 1.53e+01
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Conclusion

1 Proposed an online optimizer selection framework to select the best
optimizer from a portfolio for each component when solving
large-scale optimization problems using CC algorithm.

2 Experimentally demonstrated that the proposed CCOS algorithm was
successful in selecting the best optimizer when solving the CEC’2010
benchmark problems.

3 Showed that CCOS could potentially generate statistically better
solution quality than the default CC algorithm with no optimizer
selection ability.
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Thank You! & Questions?
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