
Cooperative Co-evolution with Online Optimizer
Selection for Large-Scale Optimization

Yuan Sun1,2 Michael Kirley 1 Xiaodong Li 2

1School of Computing and Information Systems, University of Melbourne

2School of Science, RMIT University

yuan.sun@unimelb.edu.au
yuan.sun@rmit.edu.au

July 17, 2018

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 1 / 15

Overview

1 Introduction

2 Background and Related Work

3 Cooperative Co-evolution with Online Optimizer Selection

4 Experimental Methodology and Results

5 Conclusion

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 2 / 15

Introduction: Large-Scale Continuous Optimization

Large-scale (High-dimensional) Continuous Optimization Problems are
challenging to solve:

- Search space increases exponentially.

- Problem complexity increases greatly.

- The running time of some evolutionary algorithms increases
significantly.

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 3 / 15

Background: Cooperative Co-evolution (CC)1

x1 x2 x3 x4 x5 x6

x1, x2 x∗3 , x
∗
4 x∗5 , x

∗
6

Limitation of CC: Inefficient to solve problems with imbalanced
components (contributing differently to the overall fitness values).

1Potter M A, De Jong K A. A cooperative coevolutionary approach to function
optimization[C]//International Conference on Parallel Problem Solving from Nature.
Springer, Berlin, Heidelberg, 1994: 249-257.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 4 / 15

Background: Cooperative Co-evolution (CC)1

x1 x2 x3 x4 x5 x6

x1, x2 x3, x4 x5, x6

x1, x2 x∗3 , x
∗
4 x∗5 , x

∗
6

Limitation of CC: Inefficient to solve problems with imbalanced
components (contributing differently to the overall fitness values).

1Potter M A, De Jong K A. A cooperative coevolutionary approach to function
optimization[C]//International Conference on Parallel Problem Solving from Nature.
Springer, Berlin, Heidelberg, 1994: 249-257.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 4 / 15

Background: Cooperative Co-evolution (CC)1

x1 x2 x3 x4 x5 x6

x1, x2 x∗3 , x
∗
4 x∗5 , x

∗
6

x1, x2 x∗3 , x
∗
4 x∗5 , x

∗
6

Limitation of CC: Inefficient to solve problems with imbalanced
components (contributing differently to the overall fitness values).

1Potter M A, De Jong K A. A cooperative coevolutionary approach to function
optimization[C]//International Conference on Parallel Problem Solving from Nature.
Springer, Berlin, Heidelberg, 1994: 249-257.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 4 / 15

Background: Cooperative Co-evolution (CC)1

x1 x2 x3 x4 x5 x6

x∗1 , x
∗
2 x3, x4 x∗5 , x

∗
6

x1, x2 x∗3 , x
∗
4 x∗5 , x

∗
6

Limitation of CC: Inefficient to solve problems with imbalanced
components (contributing differently to the overall fitness values).

1Potter M A, De Jong K A. A cooperative coevolutionary approach to function
optimization[C]//International Conference on Parallel Problem Solving from Nature.
Springer, Berlin, Heidelberg, 1994: 249-257.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 4 / 15

Background: Cooperative Co-evolution (CC)1

x1 x2 x3 x4 x5 x6

x∗1 , x
∗
2 x∗3 , x

∗
4 x5, x6

x1, x2 x∗3 , x
∗
4 x∗5 , x

∗
6

Limitation of CC: Inefficient to solve problems with imbalanced
components (contributing differently to the overall fitness values).

1Potter M A, De Jong K A. A cooperative coevolutionary approach to function
optimization[C]//International Conference on Parallel Problem Solving from Nature.
Springer, Berlin, Heidelberg, 1994: 249-257.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 4 / 15

Background: Cooperative Co-evolution (CC)1

x1 x2 x3 x4 x5 x6

x1, x2 x∗3 , x
∗
4 x∗5 , x

∗
6

Limitation of CC: Inefficient to solve problems with imbalanced
components (contributing differently to the overall fitness values).

1Potter M A, De Jong K A. A cooperative coevolutionary approach to function
optimization[C]//International Conference on Parallel Problem Solving from Nature.
Springer, Berlin, Heidelberg, 1994: 249-257.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 4 / 15

Background: Cooperative Co-evolution (CC)1

x1 x2 x3 x4 x5 x6

x1, x2 x∗3 , x
∗
4 x∗5 , x

∗
6

Limitation of CC: Inefficient to solve problems with imbalanced
components (contributing differently to the overall fitness values).

1Potter M A, De Jong K A. A cooperative coevolutionary approach to function
optimization[C]//International Conference on Parallel Problem Solving from Nature.
Springer, Berlin, Heidelberg, 1994: 249-257.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 4 / 15

Background: Efficient Resource Allocation in CC 2

x1, x2 x3, x4 x5, x6Components:

U1 :

U2 :

U3 :

0

0

0

t = 0

8

t = 1

x1, x2

8

9

x3, x4

9

3

x5, x6

3

8

6

3

t = 2

x3, x4

6

5

6

3

t = 3

x1, x2

5 5

4

3

t = 4

x3, x4

4

3

4

3

t = 5

x1, x2

3

Ui = (Ûi + ŷb − yb)/2. (1)

2Yang M, Omidvar M N, Li C, et al. Efficient resource allocation in cooperative
co-evolution for large-scale global optimization[J]. IEEE Transactions on Evolutionary
Computation, 2017, 21(4): 493-505.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 5 / 15

Background: Efficient Resource Allocation in CC 2

x1, x2 x3, x4 x5, x6Components:

U1 :

U2 :

U3 :

0

0

0

t = 0

8

t = 1

x1, x2

8

9

x3, x4

9

3

x5, x6

3

8

6

3

t = 2

x3, x4

6

5

6

3

t = 3

x1, x2

5 5

4

3

t = 4

x3, x4

4

3

4

3

t = 5

x1, x2

3

Ui = (Ûi + ŷb − yb)/2. (1)

2Yang M, Omidvar M N, Li C, et al. Efficient resource allocation in cooperative
co-evolution for large-scale global optimization[J]. IEEE Transactions on Evolutionary
Computation, 2017, 21(4): 493-505.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 5 / 15

Background: Efficient Resource Allocation in CC 2

x1, x2 x3, x4 x5, x6Components:

U1 :

U2 :

U3 :

0

0

0

t = 0

8

t = 1

x1, x2

8

9

x3, x4

9

3

x5, x6

3

8

6

3

t = 2

x3, x4

6

5

6

3

t = 3

x1, x2

5 5

4

3

t = 4

x3, x4

4

3

4

3

t = 5

x1, x2

3

Ui = (Ûi + ŷb − yb)/2. (1)

2Yang M, Omidvar M N, Li C, et al. Efficient resource allocation in cooperative
co-evolution for large-scale global optimization[J]. IEEE Transactions on Evolutionary
Computation, 2017, 21(4): 493-505.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 5 / 15

Background: Efficient Resource Allocation in CC 2

x1, x2 x3, x4 x5, x6Components:

U1 :

U2 :

U3 :

0

0

0

t = 0

8

t = 1

x1, x2

8

9

x3, x4

9

3

x5, x6

3

8

6

3

t = 2

x3, x4

6

5

6

3

t = 3

x1, x2

5 5

4

3

t = 4

x3, x4

4

3

4

3

t = 5

x1, x2

3

Ui = (Ûi + ŷb − yb)/2. (1)

2Yang M, Omidvar M N, Li C, et al. Efficient resource allocation in cooperative
co-evolution for large-scale global optimization[J]. IEEE Transactions on Evolutionary
Computation, 2017, 21(4): 493-505.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 5 / 15

Background: Efficient Resource Allocation in CC 2

x1, x2 x3, x4 x5, x6Components:

U1 :

U2 :

U3 :

0

0

0

t = 0

8

t = 1

x1, x2

8

9

x3, x4

9

3

x5, x6

3

8

6

3

t = 2

x3, x4

6

5

6

3

t = 3

x1, x2

5 5

4

3

t = 4

x3, x4

4

3

4

3

t = 5

x1, x2

3

Ui = (Ûi + ŷb − yb)/2. (1)

2Yang M, Omidvar M N, Li C, et al. Efficient resource allocation in cooperative
co-evolution for large-scale global optimization[J]. IEEE Transactions on Evolutionary
Computation, 2017, 21(4): 493-505.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 5 / 15

Background: Efficient Resource Allocation in CC 2

x1, x2 x3, x4 x5, x6Components:

U1 :

U2 :

U3 :

0

0

0

t = 0

8

t = 1

x1, x2

8

9

x3, x4

9

3

x5, x6

3

8

6

3

t = 2

x3, x4

6

5

6

3

t = 3

x1, x2

5 5

4

3

t = 4

x3, x4

4

3

4

3

t = 5

x1, x2

3

Ui = (Ûi + ŷb − yb)/2. (1)

2Yang M, Omidvar M N, Li C, et al. Efficient resource allocation in cooperative
co-evolution for large-scale global optimization[J]. IEEE Transactions on Evolutionary
Computation, 2017, 21(4): 493-505.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 5 / 15

Background: Efficient Resource Allocation in CC 2

x1, x2 x3, x4 x5, x6Components:

U1 :

U2 :

U3 :

0

0

0

t = 0

8

t = 1

x1, x2

8

9

x3, x4

9

3

x5, x6

3

8

6

3

t = 2

x3, x4

6

5

6

3

t = 3

x1, x2

5 5

4

3

t = 4

x3, x4

4

3

4

3

t = 5

x1, x2

3

Ui = (Ûi + ŷb − yb)/2. (1)

2Yang M, Omidvar M N, Li C, et al. Efficient resource allocation in cooperative
co-evolution for large-scale global optimization[J]. IEEE Transactions on Evolutionary
Computation, 2017, 21(4): 493-505.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 5 / 15

Background: Efficient Resource Allocation in CC 2

x1, x2 x3, x4 x5, x6Components:

U1 :

U2 :

U3 :

0

0

0

t = 0

8

t = 1

x1, x2

8

9

x3, x4

9

3

x5, x6

3

8

6

3

t = 2

x3, x4

6

5

6

3

t = 3

x1, x2

5

5

4

3

t = 4

x3, x4

4

3

4

3

t = 5

x1, x2

3

Ui = (Ûi + ŷb − yb)/2. (1)

2Yang M, Omidvar M N, Li C, et al. Efficient resource allocation in cooperative
co-evolution for large-scale global optimization[J]. IEEE Transactions on Evolutionary
Computation, 2017, 21(4): 493-505.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 5 / 15

Background: Efficient Resource Allocation in CC 2

x1, x2 x3, x4 x5, x6Components:

U1 :

U2 :

U3 :

0

0

0

t = 0

8

t = 1

x1, x2

8

9

x3, x4

9

3

x5, x6

3

8

6

3

t = 2

x3, x4

6

5

6

3

t = 3

x1, x2

5

5

4

3

t = 4

x3, x4

4

3

4

3

t = 5

x1, x2

3

Ui = (Ûi + ŷb − yb)/2. (1)

2Yang M, Omidvar M N, Li C, et al. Efficient resource allocation in cooperative
co-evolution for large-scale global optimization[J]. IEEE Transactions on Evolutionary
Computation, 2017, 21(4): 493-505.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 5 / 15

Background: Efficient Resource Allocation in CC 2

x1, x2 x3, x4 x5, x6Components:

U1 :

U2 :

U3 :

0

0

0

t = 0

8

t = 1

x1, x2

8

9

x3, x4

9

3

x5, x6

3

8

6

3

t = 2

x3, x4

6

5

6

3

t = 3

x1, x2

5

5

4

3

t = 4

x3, x4

4

3

4

3

t = 5

x1, x2

3

Ui = (Ûi + ŷb − yb)/2. (1)

2Yang M, Omidvar M N, Li C, et al. Efficient resource allocation in cooperative
co-evolution for large-scale global optimization[J]. IEEE Transactions on Evolutionary
Computation, 2017, 21(4): 493-505.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 5 / 15

CC with Optimizer Selection: Selection Procedures

Algorithms: a1 a2 Components: c1 c2

Ua1,c1 :

Ua1,c2 :

Ua2,c1 :

Ua2,c2 :

0

0

0

0

t = 0

8

t = 1

a1 c1

8

4

a1 c2

4

9

a2 c1

9

3

a2 c2

3

8

4

6

3

t = 2

a2 c1

6

5

4

6

3

t = 3

a1 c1

5 5

4

4

3

t = 4

a2 c1

4

3

4

4

3

t = 5

a1 c1

3

Uai ,cj =
Ûai ,cj + (ŷb − yb)/ŷb

2
. (2)

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 6 / 15

CC with Optimizer Selection: Selection Procedures

Algorithms: a1 a2 Components: c1 c2

Ua1,c1 :

Ua1,c2 :

Ua2,c1 :

Ua2,c2 :

0

0

0

0

t = 0

8

t = 1

a1 c1

8

4

a1 c2

4

9

a2 c1

9

3

a2 c2

3

8

4

6

3

t = 2

a2 c1

6

5

4

6

3

t = 3

a1 c1

5 5

4

4

3

t = 4

a2 c1

4

3

4

4

3

t = 5

a1 c1

3

Uai ,cj =
Ûai ,cj + (ŷb − yb)/ŷb

2
. (2)

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 6 / 15

CC with Optimizer Selection: Selection Procedures

Algorithms: a1 a2 Components: c1 c2

Ua1,c1 :

Ua1,c2 :

Ua2,c1 :

Ua2,c2 :

0

0

0

0

t = 0

8

t = 1

a1 c1

8

4

a1 c2

4

9

a2 c1

9

3

a2 c2

3

8

4

6

3

t = 2

a2 c1

6

5

4

6

3

t = 3

a1 c1

5 5

4

4

3

t = 4

a2 c1

4

3

4

4

3

t = 5

a1 c1

3

Uai ,cj =
Ûai ,cj + (ŷb − yb)/ŷb

2
. (2)

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 6 / 15

CC with Optimizer Selection: Selection Procedures

Algorithms: a1 a2 Components: c1 c2

Ua1,c1 :

Ua1,c2 :

Ua2,c1 :

Ua2,c2 :

0

0

0

0

t = 0

8

t = 1

a1 c1

8

4

a1 c2

4

9

a2 c1

9

3

a2 c2

3

8

4

6

3

t = 2

a2 c1

6

5

4

6

3

t = 3

a1 c1

5 5

4

4

3

t = 4

a2 c1

4

3

4

4

3

t = 5

a1 c1

3

Uai ,cj =
Ûai ,cj + (ŷb − yb)/ŷb

2
. (2)

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 6 / 15

CC with Optimizer Selection: Selection Procedures

Algorithms: a1 a2 Components: c1 c2

Ua1,c1 :

Ua1,c2 :

Ua2,c1 :

Ua2,c2 :

0

0

0

0

t = 0

8

t = 1

a1 c1

8

4

a1 c2

4

9

a2 c1

9

3

a2 c2

3

8

4

6

3

t = 2

a2 c1

6

5

4

6

3

t = 3

a1 c1

5 5

4

4

3

t = 4

a2 c1

4

3

4

4

3

t = 5

a1 c1

3

Uai ,cj =
Ûai ,cj + (ŷb − yb)/ŷb

2
. (2)

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 6 / 15

CC with Optimizer Selection: Selection Procedures

Algorithms: a1 a2 Components: c1 c2

Ua1,c1 :

Ua1,c2 :

Ua2,c1 :

Ua2,c2 :

0

0

0

0

t = 0

8

t = 1

a1 c1

8

4

a1 c2

4

9

a2 c1

9

3

a2 c2

3

8

4

6

3

t = 2

a2 c1

6

5

4

6

3

t = 3

a1 c1

5 5

4

4

3

t = 4

a2 c1

4

3

4

4

3

t = 5

a1 c1

3

Uai ,cj =
Ûai ,cj + (ŷb − yb)/ŷb

2
. (2)

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 6 / 15

CC with Optimizer Selection: Selection Procedures

Algorithms: a1 a2 Components: c1 c2

Ua1,c1 :

Ua1,c2 :

Ua2,c1 :

Ua2,c2 :

0

0

0

0

t = 0

8

t = 1

a1 c1

8

4

a1 c2

4

9

a2 c1

9

3

a2 c2

3

8

4

6

3

t = 2

a2 c1

6

5

4

6

3

t = 3

a1 c1

5 5

4

4

3

t = 4

a2 c1

4

3

4

4

3

t = 5

a1 c1

3

Uai ,cj =
Ûai ,cj + (ŷb − yb)/ŷb

2
. (2)

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 6 / 15

CC with Optimizer Selection: Selection Procedures

Algorithms: a1 a2 Components: c1 c2

Ua1,c1 :

Ua1,c2 :

Ua2,c1 :

Ua2,c2 :

0

0

0

0

t = 0

8

t = 1

a1 c1

8

4

a1 c2

4

9

a2 c1

9

3

a2 c2

3

8

4

6

3

t = 2

a2 c1

6

5

4

6

3

t = 3

a1 c1

5 5

4

4

3

t = 4

a2 c1

4

3

4

4

3

t = 5

a1 c1

3

Uai ,cj =
Ûai ,cj + (ŷb − yb)/ŷb

2
. (2)

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 6 / 15

CC with Optimizer Selection: Selection Procedures

Algorithms: a1 a2 Components: c1 c2

Ua1,c1 :

Ua1,c2 :

Ua2,c1 :

Ua2,c2 :

0

0

0

0

t = 0

8

t = 1

a1 c1

8

4

a1 c2

4

9

a2 c1

9

3

a2 c2

3

8

4

6

3

t = 2

a2 c1

6

5

4

6

3

t = 3

a1 c1

5

5

4

4

3

t = 4

a2 c1

4

3

4

4

3

t = 5

a1 c1

3

Uai ,cj =
Ûai ,cj + (ŷb − yb)/ŷb

2
. (2)

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 6 / 15

CC with Optimizer Selection: Selection Procedures

Algorithms: a1 a2 Components: c1 c2

Ua1,c1 :

Ua1,c2 :

Ua2,c1 :

Ua2,c2 :

0

0

0

0

t = 0

8

t = 1

a1 c1

8

4

a1 c2

4

9

a2 c1

9

3

a2 c2

3

8

4

6

3

t = 2

a2 c1

6

5

4

6

3

t = 3

a1 c1

5

5

4

4

3

t = 4

a2 c1

4

3

4

4

3

t = 5

a1 c1

3

Uai ,cj =
Ûai ,cj + (ŷb − yb)/ŷb

2
. (2)

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 6 / 15

CC with Optimizer Selection: Selection Procedures

Algorithms: a1 a2 Components: c1 c2

Ua1,c1 :

Ua1,c2 :

Ua2,c1 :

Ua2,c2 :

0

0

0

0

t = 0

8

t = 1

a1 c1

8

4

a1 c2

4

9

a2 c1

9

3

a2 c2

3

8

4

6

3

t = 2

a2 c1

6

5

4

6

3

t = 3

a1 c1

5

5

4

4

3

t = 4

a2 c1

4

3

4

4

3

t = 5

a1 c1

3

Uai ,cj =
Ûai ,cj + (ŷb − yb)/ŷb

2
. (2)

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 6 / 15

CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9 a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 7 / 15

CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9 a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 7 / 15

CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i a1; c1; 2

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9 a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 7 / 15

CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i a1; c2; 1

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9 a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 7 / 15

CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i a1; c3; 9

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9 a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 7 / 15

CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i a2; c1; 3

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9 a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 7 / 15

CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i a2; c2; 5

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9 a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 7 / 15

CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i a2; c3; 7

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9 a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 7 / 15

CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i a1; c3; 9

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9 a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 7 / 15

CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9 a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 7 / 15

CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9 a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 7 / 15

CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9 a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 7 / 15

CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 7 / 15

CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 7 / 15

CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9 a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 7 / 15

CC with Optimizer Selection: Time Complexity

1 using an array: Θ(|A||C|T).

a1; c1; 2 a1; c2; 1 a1; c3; 9 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i

a1; c1; 2 a1; c2; 1 a1; c3; 6 a2; c1; 3 a2; c2; 5 a2; c3; 7t = i + 1

2 using a max-heap: O
(
T log(|A||C|)

)
.

a1; c3; 9

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i

a1; c3; 9 a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a1; c3; 6

a2; c3; 7 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

a2; c3; 7

a1; c3; 6 a2; c2; 5

a1; c1; 2 a1; c2; 1 a2; c1; 3

t = i + 1

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 7 / 15

Experimental Methodology

- Decomposition method: Recursive Differential Grouping3 which uses
O
(
n log(n)

)
function evaluations in decomposition.

- Benchmark problems: CEC’2010 benchmark large-scale global
optimization problems.

- CCOS: uses Self-adaptive Differential Evolution with Neighborhood
Search (SaNSDE) and Social-Learning Particle Swarm Optimization
(SL-PSO) as the candidate optimizers.

- CCDE: only uses SaNSDE as the optimizer.

- CCPSO: only uses SL-PSO as the optimizer.

- Statistical test: Wilcoxon rank-sum test with 95% confidence interval.

3Sun Y, Kirley M, Halgamuge S K. A recursive decomposition method for large scale
continuous optimization[J]. IEEE Transactions on Evolutionary Computation, accepted
November 2017.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 8 / 15

Experimental Methodology

- Decomposition method: Recursive Differential Grouping3 which uses
O
(
n log(n)

)
function evaluations in decomposition.

- Benchmark problems: CEC’2010 benchmark large-scale global
optimization problems.

- CCOS: uses Self-adaptive Differential Evolution with Neighborhood
Search (SaNSDE) and Social-Learning Particle Swarm Optimization
(SL-PSO) as the candidate optimizers.

- CCDE: only uses SaNSDE as the optimizer.

- CCPSO: only uses SL-PSO as the optimizer.

- Statistical test: Wilcoxon rank-sum test with 95% confidence interval.

3Sun Y, Kirley M, Halgamuge S K. A recursive decomposition method for large scale
continuous optimization[J]. IEEE Transactions on Evolutionary Computation, accepted
November 2017.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 8 / 15

Experimental Methodology

- Decomposition method: Recursive Differential Grouping3 which uses
O
(
n log(n)

)
function evaluations in decomposition.

- Benchmark problems: CEC’2010 benchmark large-scale global
optimization problems.

- CCOS: uses Self-adaptive Differential Evolution with Neighborhood
Search (SaNSDE) and Social-Learning Particle Swarm Optimization
(SL-PSO) as the candidate optimizers.

- CCDE: only uses SaNSDE as the optimizer.

- CCPSO: only uses SL-PSO as the optimizer.

- Statistical test: Wilcoxon rank-sum test with 95% confidence interval.

3Sun Y, Kirley M, Halgamuge S K. A recursive decomposition method for large scale
continuous optimization[J]. IEEE Transactions on Evolutionary Computation, accepted
November 2017.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 8 / 15

Experimental Methodology

- Decomposition method: Recursive Differential Grouping3 which uses
O
(
n log(n)

)
function evaluations in decomposition.

- Benchmark problems: CEC’2010 benchmark large-scale global
optimization problems.

- CCOS: uses Self-adaptive Differential Evolution with Neighborhood
Search (SaNSDE) and Social-Learning Particle Swarm Optimization
(SL-PSO) as the candidate optimizers.

- CCDE: only uses SaNSDE as the optimizer.

- CCPSO: only uses SL-PSO as the optimizer.

- Statistical test: Wilcoxon rank-sum test with 95% confidence interval.

3Sun Y, Kirley M, Halgamuge S K. A recursive decomposition method for large scale
continuous optimization[J]. IEEE Transactions on Evolutionary Computation, accepted
November 2017.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 8 / 15

Experimental Methodology

- Decomposition method: Recursive Differential Grouping3 which uses
O
(
n log(n)

)
function evaluations in decomposition.

- Benchmark problems: CEC’2010 benchmark large-scale global
optimization problems.

- CCOS: uses Self-adaptive Differential Evolution with Neighborhood
Search (SaNSDE) and Social-Learning Particle Swarm Optimization
(SL-PSO) as the candidate optimizers.

- CCDE: only uses SaNSDE as the optimizer.

- CCPSO: only uses SL-PSO as the optimizer.

- Statistical test: Wilcoxon rank-sum test with 95% confidence interval.

3Sun Y, Kirley M, Halgamuge S K. A recursive decomposition method for large scale
continuous optimization[J]. IEEE Transactions on Evolutionary Computation, accepted
November 2017.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 8 / 15

Experimental Methodology

- Decomposition method: Recursive Differential Grouping3 which uses
O
(
n log(n)

)
function evaluations in decomposition.

- Benchmark problems: CEC’2010 benchmark large-scale global
optimization problems.

- CCOS: uses Self-adaptive Differential Evolution with Neighborhood
Search (SaNSDE) and Social-Learning Particle Swarm Optimization
(SL-PSO) as the candidate optimizers.

- CCDE: only uses SaNSDE as the optimizer.

- CCPSO: only uses SL-PSO as the optimizer.

- Statistical test: Wilcoxon rank-sum test with 95% confidence interval.

3Sun Y, Kirley M, Halgamuge S K. A recursive decomposition method for large scale
continuous optimization[J]. IEEE Transactions on Evolutionary Computation, accepted
November 2017.
Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 8 / 15

Experimental Results: Selection Details of CCOS (f16)

0 20 40 60 80 100 120 140 160 180 200 220 240 260

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

t

c

SaNSDE SL-PSO

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 9 / 15

Experimental Results: Selection Ability of CCOS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10−3

100

103

ρ
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10−24

10−9

106

f

ρ
y

Figure: ρt : the ratio of the number of evolutionary cycles that DE and PSO were
selected; ρy : the ratio of the solution quality generated by CCPSO and CCDE.

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 10 / 15

Experimental Results: Selection Ability of CCOS (f8)

0 50 100 150 200 250 300
10−11

104

1019

y

CCPSO CCDE CCOS

0 50 100 150 200 250 300

1

2

c

SaNSDE SL-PSO

0 50 100 150 200 250 300

1

2

c

SaNSDE

0 50 100 150 200 250 300

1

2

t

c

SL-PSO

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 11 / 15

Experimental Results: Selection Ability of CCOS (f8)

0 50 100 150 200 250 300
10−11

104

1019

y

CCPSO CCDE CCOS

0 50 100 150 200 250 300

1

2

c

SaNSDE SL-PSO

0 50 100 150 200 250 300

1

2

c

SaNSDE

0 50 100 150 200 250 300

1

2

t

c

SL-PSO

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 11 / 15

Experimental Results: Comparison with CCDE and CCPSO

CCOS CCDE CCPSO
1010

1011

1012

f4

CCOS CCDE CCPSO
10−19

10−6

107

f7

CCOS CCDE CCPSO

104

106

f13

CCOS CCDE CCPSO
10−14

10−6

102

f16

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 12 / 15

Experimental Results: Comparison with State-of-the-arts

Table: The optimization results of CCOS, CSO, MOS and MA-SW-Chain when
used to solve the CEC’2010 benchmark problems (Wilcoxon rank-sum tests).

Func Stats CCOS CSO MOS MA-SW-Chain

f4
median 1.96e+10 7.26e+11 4.94e+11 3.10e+11
mean 1.95e+10 7.25e+11 5.16e+11 2.97e+11
std 2.23e+09 1.23e+11 1.85e+11 6.19e+10

f7
median 3.94e-13 2.04e+04 2.27e+07 7.94e-03
mean 9.15e-12 2.01e+04 3.54e+07 1.17e+02
std 2.61e-11 3.86e+03 3.22e+07 2.37e+02

f13
median 3.85e+02 5.47e+02 3.19e+02 8.61e+02
mean 4.10e+02 6.29e+02 3.32e+02 9.83e+02
std 1.09e+02 2.32e+02 1.19e+02 5.66e+02

f16
median 1.49e-13 5.75e-08 3.97e+02 9.32e+01
mean 1.88e-01 5.89e-08 3.96e+02 9.95e+01
std 5.53e-01 5.61e-09 3.47e+00 1.53e+01

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 13 / 15

Conclusion

1 Proposed an online optimizer selection framework to select the best
optimizer from a portfolio for each component when solving
large-scale optimization problems using CC algorithm.

2 Experimentally demonstrated that the proposed CCOS algorithm was
successful in selecting the best optimizer when solving the CEC’2010
benchmark problems.

3 Showed that CCOS could potentially generate statistically better
solution quality than the default CC algorithm with no optimizer
selection ability.

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 14 / 15

Conclusion

1 Proposed an online optimizer selection framework to select the best
optimizer from a portfolio for each component when solving
large-scale optimization problems using CC algorithm.

2 Experimentally demonstrated that the proposed CCOS algorithm was
successful in selecting the best optimizer when solving the CEC’2010
benchmark problems.

3 Showed that CCOS could potentially generate statistically better
solution quality than the default CC algorithm with no optimizer
selection ability.

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 14 / 15

Conclusion

1 Proposed an online optimizer selection framework to select the best
optimizer from a portfolio for each component when solving
large-scale optimization problems using CC algorithm.

2 Experimentally demonstrated that the proposed CCOS algorithm was
successful in selecting the best optimizer when solving the CEC’2010
benchmark problems.

3 Showed that CCOS could potentially generate statistically better
solution quality than the default CC algorithm with no optimizer
selection ability.

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 14 / 15

Thank You! & Questions?

Yuan Sun (University of Melborne) CC with Online Optimizer Selection July 17, 2018 15 / 15

	Introduction
	Background and Related Work
	Cooperative Co-evolution with Online Optimizer Selection
	Experimental Methodology and Results
	Conclusion

