Cooperative Co-evolution with Online Optimizer Selection for
Large-Scale Optimization

Yuan Sun
Computing and Information Systems
The University of Melbourne
Parkville, VIC, Australia
yuan.sun@unimelb.edu.au

ABSTRACT

Cooperative co-evolution (CC) is an effective framework that can
be used to solve large-scale optimization problems. It typically di-
vides a problem into components and uses one optimizer to solve
the components in a round-robin fashion. However the relative
contribution of each component to the overall fitness value may
vary. Furthermore, using one optimizer may not be sufficient when
solving a wide range of components with different characteristics.
In this paper, we propose a novel CC framework which can select
an appropriate optimizer to solve a component based on its con-
tribution to the fitness improvement. In each evolutionary cycle,
the candidate optimizer and component that make the greatest
contribution to the fitness improvement are selected for evolving.
We evaluated the efficacy of the proposed CC with Optimizer Se-
lection (CCOS) algorithm using large-scale benchmark problems.
The numerical experiments showed that CCOS outperformed the
CC model without optimizer selection ability. When compared
against several other state-of-the-art algorithms, CCOS generated
competitive solution quality.

CCS CONCEPTS

» Theory of computation — Online learning algorithms; Di-
vide and conquer;

KEYWORDS

Large-scale optimization, cooperarive co-evolution, algorithm se-
lection, algorithm hybridization, resources allocation

ACM Reference Format:

Yuan Sun, Michael Kirley, and Xiaodong Li. 2018. Cooperative Co-evolution
with Online Optimizer Selection for Large-Scale Optimization. In GECCO
’18: Genetic and Evolutionary Computation Conference, July 15-19, 2018,
Kyoto, Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3205455.3205625

1 INTRODUCTION

Large-scale global optimization (LSGO) problems are challenging
for Evolutionary Algorithms (EAs) to solve. This may be partially

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GECCO 18, July 15-19, 2018, Kyoto, Japan

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5618-3/18/07...$15.00
https://doi.org/10.1145/3205455.3205625

Michael Kirley
Computing and Information Systems
The University of Melbourne
Parkville, VIC, Australia
mkirley@unimelb.edu.au

1079

Xiaodong Li
School of Science
RMIT University

Melbourne, VIC, Australia
xiaodong.li@rmit.edu.au

attributed to the fact that the search space and the complexity of an
optimization problem grow quickly as the dimensionality increases
[19, 31]. Cooperative Co-evolution (CC) [22] has been used with
some success when scaling up EAs to tackle very high dimensional
search and optimization problems [7, 14, 18, 23, 33]. The CC frame-
work divides a LSGO problem into a number of components that
are solved cooperatively. When optimizing each component, rep-
resentatives (typically the best sub-solutions found) from each of
the other components are combined with individuals in the opti-
mized component, to form complete candidate solutions that can
be evaluated.

The original CC framework employs only one EA to solve the
components in a round-robin fashion: the components are opti-
mized sequentially with an equal computational budget [22]. How-
ever, the relative contribution of each component to the overall
fitness value may vary [19]. To address this issue, the contribution
based CC framework is proposed to efficiently allocate computa-
tional resources between components [20, 32].

Another limitation of the original CC framework is that it may be
insufficient when attempting to solve a wide range of components
using only one optimizer. Algorithm selection and hybridization
techniques have been suggested as attractive approaches to bal-
ance exploration and exploitation, capable of generating promising
results [1, 9, 17]. However, such mechanisms have not been thor-
oughly investigated within the context of CC.

In this paper, we propose a novel CC framework, which can
select an appropriate optimizer from a portfolio to optimize a com-
ponent. In the first evolutionary cycle, the candidate optimizers
are sequentially used to optimize the components. The fitness im-
provement by each optimizer when solving each component is
calculated. In the remaining cycles, the optimizer and component
pair that makes the greatest historical contribution to the fitness
improvement is selected, and only the selected optimizer is used to
solve the corresponding component.

We have evaluated the efficacy of the proposed CC with opti-
mizer selection (CCOS) using the benchmark problems from the
special session on LSGO at CEC’2010 [28]. Comprehensive numer-
ical simulations showed that CCOS can successfully select an ap-
propriate optimizer to solve the benchmark problems. Significantly,
CCOS outperformed the base-line CC algorithm without optimizer
selection ability in most cases. When compared against several
other state-of-the-arts, CCOS achieved statistically comparable or
significantly better solution quality.

The remainder of this paper is organized as follows. In Section
2, we introduce the state-of-the-art algorithms that can be used to
solve LSGO problems. In Section 3, the proposed CCOS is described

https://doi.org/10.1145/3205455.3205625
https://doi.org/10.1145/3205455.3205625
https://doi.org/10.1145/3205455.3205625

GECCO ’18, July 15-19, 2018, Kyoto, Japan

in detail, and the additional computational complexity induced by
the online optimizer selection process is analyzed. Section 4 de-
scribes experiments to evaluate the proposed CCOS algorithm. The
following section presents and analyzes the experimental results.
Conclusion is drawn in the last section.

2 RELATED WORK

In this section, we briefly describe the state-of-the-art techniques
that can be used to ‘scale up’ EAs for solving LSGO problems.

2.1 Cooperative Co-evolution

The CC framework tackles a LSGO problem using a divide-and-
conquer strategy. It divides the original problem into a number
of low-dimensional components that are solved cooperatively. A
standard CC algorithm consists of two stages: decomposition and
optimization.

In the decomposition stage, a LSGO problem is decomposed
into several components. A number of decomposition methods
have been proposed in recent years, e.g., random grouping [33],
cooperative co-evolution with variable interaction learning [3],
differential grouping (DG) [18], extended DG [25], global DG [15],
fast interdependency identification [8], DG2 [21] and recursive DG
(RDG) [26], to name a few.

In the optimization stage, an EA is typically used to optimize
the components based on a context vector. The context vector
is a complete candidate solution, typically consisting of the best
sub-solutions from each component. When optimizing the i com-
ponent, the context vector (excluding the ith sub-solution) is used
to combine with the individuals in the ith component, to form
complete candidate solutions that can be evaluated.

The original CC framework [22] optimizes the components in
a round-robin fashion. That is the computational resources are
equally distributed to each component. However in problems with
imbalanced components [19], the weight of each component to the
overall fitness value may be very different. To efficiently solve such
problem, the contribution based CC (CBCC) is proposed, which
allocates computational resources to components based on their
values of fitness improvement [20]. In each cycle, it selects and
optimizes the component that makes the greatest accumulated
contribution to the fitness improvement. Then the contribution of
the selected component ¢; is updated as follows:

M

where U; is the previous accumulated contribution; 4, and yj, are
the best fitness values found before and after c¢; was optimized.
Without loss of generality, we assume minimization problems in
this paper. The fitness improvement in a minimization problem
refers to the reduction of objective value or cost.

The CBCC framework could respond too slowly to the recent
fitness improvement. A component which is stagnant (i.e., the over-
all fitness cannot be further improved by solving this component)
may still be selected and evolved for many cycles if its previous
contribution was very large. To address this issue, a more effective
contribution accumulation criterion is proposed [32]:

Ui = (Ui + 9p — yp)/2.

Ui = U; + i — yp

@)

1080

Yuan Sun, Michael Kirley, and Xiaodong Li

This criterion gives more weight to the latest fitness improvement.
The contribution in the early cycles becomes less important as
the evolutionary process progresses. Therefore, such criterion can
respond faster to a more recent fitness improvement.

The criterion Eq. (2) works well when the identified components
are additively separable, e.g., f(x) := f1(x1) + f2(x2), where x; and
x3 are the decision sub-vectors in components c¢; and c; respectively.
The absolute value of the fitness improvement in component c; is
independent with component c¢;, and vice verse:

Up - yp = (filx) + o)) — (fix) + £o(x2)) = olk2) - fo(x2), (3)

where X, and x, are the best sub-solutions found before and after c;
is optimized. However, if ¢; and ¢y are not additively separable, e.g.,
f(x) := fi(x1)f2(x2), the absolute value of the fitness improvement
in component c; is influenced by the fitness of component c;:

b = yp = filk)fe(R) = filx)fa(x2) = fiGa) (folke) = fox2) . (4)

The original CC uses only one EA to solve all the components. A
memetic CC is proposed to enhance the search of an EA with local
search methods [27]. In each cycle, after applying an EA, different
local search methods were used to further solve separable and non-
separable components. In Section 3, we will propose a more general
optimizer selection / hybridization framework.

2.2 Techniques Other Than Cooperative
Co-evolution

In addition to CC, there are other techniques that can be used to
address the additional challenges inherent in LSGO problems. Rep-
resentative techniques include the model complexity control [6] and
random projection [10] methods for estimation of distribution algo-
rithms; the multiple strategies [2] and generalized opposition-based
learning [30] methods for differential evolution; the social learning
[5] and pairwise competition [4] methods for particle swarm opti-
mization; and the multiple trajectory search [29] as well as multiple
offspring sampling [11] methods for algorithm hybridization. Due
to page limits, we cannot describe these techniques in detail.

3 COOPERATIVE CO-EVOLUTION WITH
COMPONENT OPTIMIZER SELECTION

In this section, we describe a novel CC framework that can select
an appropriate optimizer to solve a component in the evolutionary
process.

The proposed CC framework consists of two stages: a decompo-
sition stage and an enhanced optimization stage. In the decomposi-
tion stage, any decomposition method can be used to decompose a
LSGO problem into several components. In the optimization stage,
the candidate optimizer that contributes the most to the fitness
improvement is selected to solve a component.

In the first cycle, the candidate optimizers (A) are used to solve
the components (C) sequentially. Each candidate optimizer is as-
signed with equal computational budget to solve each component.
The contribution of optimizer a; (1 < i < |A|) when solving com-
ponent ¢; (1 < j < |C]) is calculated as the relative fitness improve-
ment [13, 35]:

_U -

Ia,-,cj - (5)
Yo

Cooperative Co-evolution with Online Optimizer Selection

where g, and y;, are the best fitness values found before and after
applying optimizer a; on component c; in one cycle. The relative
fitness improvement illustrates the strength and weakness of the
candidate optimizers when solving the components.

The overall contribution of optimizer a; when solving compo-
nent ¢; is accumulated as follows:

Uai,ﬂj + Iai»Cj
2

Uaj,c; = , (6)
where Uy, ¢ ; is the latest accumulated contribution of optimizer
a; on component c; before this cycle starts. The value of Ua,—,cj
is initialized as 0. The accumulated contribution Ug;,,¢; takes into
account all relative fitness improvements in the previous cycles.
The weight of contributions in the past decays exponentially as the
evolutionary process progresses.

In the next cycle, the optimizer and component pair that has the
maximum value of accumulated contribution (maximum of U) is
selected:

<aj,cj >= argmax{Uai,cj|l <i<|AL1<j< |C|} 7)

ai,cj

Only the selected optimizer a; is used to solve component c; in this
cycle. In other words, the proposed CC framework only allocates
computational resources to the pair of optimizer and component
that previously contributes the most to overall fitness improvement.
The fitness improvement Iag,c; is calculated and the accumulated
contribution Uy, ¢; is updated as before. This process continues
until the computational budget is exhausted.

Our contribution accumulating criterion differs from Eq. (2)
in that our approach considers the relative fitness improvement
[13, 35], while Eq. (2) is based on the absolute value of the fitness
improvement. We believe that the relative fitness improvement is
more reliable in our model as it removes the bias of the order that
optimizers are used to solve the components. An optimizer which is
used first to solve a component is more likely to have a large value
of the absolute fitness improvement, as the initial fitness value is
large.

In the following, we analyze the additional computational cost
imposed by the online optimizer selection procedure. An naive
approach to implement the optimizer selection model is to store
the values of U in an array. In each evolutionary cycle, a linear
scan is performed in order to find the maximum value of the array.
Therefore the total computational complexity is ©(|A||C|T), where
T is the maximum cycle.

To improve the efficiency of selection, we can use the max-
heap data structure. The nodes of the max-heap are the tuples
< aj,¢j,Ug;,¢; > where 1 < i < |A|,and 1 < j < |C|. Therefore,
the number of nodes in the max-heap is |A||C|, and the height of
the max-heap is log,(|A[|C|). Initially, the nodes are sequentially
placed into a complete binary tree. After the first cycle, the bottom-
up algorithm [12] can be used to turn the complete binary tree
into a max-heap with respect to the contribution values U, which
takes ©(]A||C]) time. In each of the following cycles, the root of
the max-heap is selected as it has the maximum U value. The se-
lected optimizer is then used to solve the component, and the U
value of the root is updated. To re-heapify the complete binary
tree, we can let the root “sift down” to the bottom, which takes

1081

GECCO 18, July 15-19, 2018, Kyoto, Japan

Algorithm 1 CC with optimizer selection

1: Decompose the LSGO problem into components C.

2: Initialize the set of candidate optimizers A.

3: Initialize the contribution of each component optimizer pair: Uy;, c; =0.
4: Initialize the evolutionary cycle ¢ = 1.

5: while t < T do

6: if t = 1 then

7: for i from 1to |A| do

8: for j from 1 to |C| do

9: Solve component c¢; using optimizer a;.

10: Calculate contribution: laj,c; = 9 — ys)/Up-
11: Accumulate contribution: Uaj,cj = (IA]ai,cj + Iai,cj)/Z.
12: end for

13: end for

14: else

15: < aj, cj >= argmax{Uai,cj|1 <i<JAl,1<j< ICl}.

aj,cj

16: Solve component ¢; using optimizer a;.

17: Calculate contribution: lajc; = (Ub — yp)/Yp-

18: Accumulate contribution: Uajcj = (Uai,cj- + Iai,cj)/z.
19: end if
20: Update the evolutionary cycle: t = ¢ + 1.

21: end while
22: return the best fitness value found yy,.

O(log(JA||C])) time [12]. Therefore, the total time complexity is
O(|A[IC| + (T - 1) log(JA||C|)). As T is much larger than |A| or |C|,
the total time complexity can be written as O(T log(|A[|C|)).

4 EXPERIMENTAL METHODOLOGY

In this section, numerical experiments are designed to evaluate
the efficacy of the proposed CC framework with online optimizer
selection.

In the decomposition stage, the RDG [26] method was used to
decompose a LSGO problem into components. The RDG method
identifies the interaction between two subsets of decision variables
based on non-linearity detection. A recursive procedure is adopted
to improve decomposition efficiency.

In the optimization stage, the self-adaptive differential evolu-
tion with neighborhood search (SaNSDE) [34] and social-learning
particle swarm optimization (SL-PSO) [5] were used as the candi-
date optimizers to solve components. The SaNSDE is a widely used
optimizer in the CC domain [18, 21, 25, 26, 33]. The SL-PSO is a
competitive optimizer for solving large-scale optimization prob-
lems, however it has not been tested within the context of CC. We
term our model as CC with optimizer selection (CCOS). In the fol-
lowing, if not specified, we use DE to represent SaNSDE, and PSO
to represent SL-PSO for the sake of simplicity.

The proposed CCOS algorithm was used to solve the CEC’2010
LSGO benchmark problems [28].! The maximum number of func-
tion evaluations (FEs) was set to 10°. The FEs in each cycle was
set to 10%. The population size for DE and PSO was set to 100. It
is noteworthy that the DE and PSO shared the same population
in the evolutionary process. This allowed the two optimizers to
exchange information and to collaboratively solve the components.

!The MATLAB implementation of the CCOS algorithm is available from the following
link: https://bitbucket.org/yuans/ccos.

https://bitbucket.org/yuans/ccos

GECCO ’18, July 15-19, 2018, Kyoto, Japan

Yuan Sun, Michael Kirley, and Xiaodong Li

el el e e

O O = DNWR A X0 O

T 9 © ¢ & 6 6 6 ¢ % 9§ & & ¢ 6 ¢ & & & §
>

Addassaas

_ DN W TN X

» SaNSDE 4 SL-PSO

Assans

JUVIVRIN

20 40 60 80 100

120

140 160 180 200 220 240 260

Figure 1: The components and optimizers selected by the CCOS algorithm in the evolutionary process when used to solve the
CEC’2010 fi¢ benchmark problem. The horizontal axis (t) represents the number of the evolutionary cycles, while the vertical

axis (c) represents the index of the components.

The initial population was uniformly randomly generated across
the search space. Each individual of the population had two suites
of parameters: one for DE and the other for PSO. The parameter
settings for DE and PSO were consistent with the original papers.
When DE (PSO) was selected to update the population, the param-
eter values for PSO (DE) of the offsprings were copied from their
parents. For each benchmark problem, the median, mean and stan-
dard deviation of the best solutions found by the CCOS algorithm
based on 25 independent runs were recorded.

To show the efficacy of the proposed CCOS algorithm, we com-
pared the performance of CCOS against the performances of CCDE
and CCPSO. The CCDE (CCPSO) differs from CCOS in that the
former uses only DE (PSO) to solve the components, while the
latter uses both DE and PSO as the component optimizers. The
performance of the CCOS algorithm was also compared to the
performances of several other state-of-the-art algorithms — com-
petitive swarm optimizer (CSO) [4] MOS [11] and MA-SW-Chains
[16] with default parameter settings. The MOS algorithm achieved
the best performance in the 2011 special issue of the Soft Comput-
ing journal, and the MA-SW-Chains algorithm achieved the best
performance in the CEC 2010 special session and competition on
LSGO. The Wilcoxon rank-sum test [24] with 95% confidence in-
terval (significance level @ = 0.05) was conducted to identify if the
CCOS algorithm generated statistically significantly better solution
quality than the other algorithm.

5 EXPERIMENTAL RESULTS

In Section 5.1, we present the details of the components and opti-
mizers selected by the CCOS algorithm in the evolutionary process.

1082

In Section 5.2, we analyze the accuracy of CCOS in terms of select-
ing an appropriate optimizer. Section 5.3 presents the comparison
between CCOS against the CC without optimizer selection ability:
CCDE and CCPSO. Section 5.4 presents the comparison between
CCOS with several other state-of-the-arts.

5.1 Selection Details of CCOS

To track the optimizer selection process of the proposed CCOS
algorithm, we selected CEC’2010 fi¢ benchmark problem. The fi6
is a partially separable problem with 20 components, each with 50
non-separable decision variables. The details of the components
and optimizers selected by CCOS in the evolutionary process were
shown in Figure 1. In the first cycle, both of the DE and PSO were
used to solve each of the 20 components, and the contribution of
each optimizer component pair was calculated. In the remaining
cycles, the optimizer component pair that historically contributed
the most to the fitness improvement was selected and evolved.
We observed that in the first 160 cycles, PSO was most frequently
selected to solve the components, while in the last 100 cycles, DE
was selected more often.

5.2 Selection Ability of CCOS

To investigate whether the proposed CCOS algorithm can select
the best optimizer to solve the benchmark problems, we calculated
the ratio of the evolutionary cycles that DE and PSO were selected
by CCOS:
=2 0
tpso
where tpg and tpso denote the number of cycles that DE and PSO
were selected in the evolutionary process respectively. The values

Cooperative Co-evolution with Online Optimizer Selection

103
102
10! f f

100F - -~

Pt

1072

-3
10 1234567 8 91011121314151617 18 19 20

f

Py

GECCO 18, July 15-19, 2018, Kyoto, Japan

10*

1073

10710

10717

10—24

1234567 8 91011121314151617 181920

f

Figure 2: The ratio of the number of evolutionary cycles (p;) that DE and PSO were selected by the CCOS algorithm (left figure),
as well as the ratio of the solution quality (p,) generated by CCPSO and CCDE (right figure) when used to solve the CEC’2010
benchmark problems. The horizontal axis (f) represents the index of the benchmark problems. The ratio was calculated using
the run that generated the median best solution from 25 independent runs. In each figure, the horizontal dashed line represents

the base line p = 1.

of the ratio p; for the CEC’2010 benchmark problems were plotted
in Figure 2.If p; < 1, it meant the PSO optimizer was selected more
often than DE when used to solve the given problem.

We also plotted in Figure 2 the ratio of the solution quality found
by the CCPSO and CCDE algorithms:

YPSO
P e @
where ypso and ypg denote the median of the best fitness values
found by CCPSO and CCDE based on 25 independent runs. If p, < 1,
it meant the best solution quality found by CCPSO was smaller
than that found by CCDE, therefore the corresponding optimizer
PSO was better than DE when used to solve the given problem.

We observed that the pattern of the ratio p, was generally con-
sistent with the pattern of p;. On the benchmark problems where
CCPSO generated better solution quality than CCDE (py < 1), the
corresponding optimizer PSO was selected more often (p; < 1)
by the CCOS algorithm in the evolutionary process except for the
problems f; and f3.

The problem f; is fully separable. We observed that both of
the py and p; were close to 1. The median of the best solution
quality generated by CCDE was 3.12e+03, which was close to that
generated by CCPSO 1.52e+03. The number of the evolutionary
cycles that DE and PSO was selected by CCOS were 166 and 134
respectively. The quality of the median best solution generated by
CCOS was in between of those generated by CCDE and CCPSO.

The problem f3 consists of a component of 950 separable decision
variables and a component of 50 non-separable decision variables.
The median of the best solution quality generated by CCDE was
better than that generated by CCPSO. However the number of
cycles that DE was selected by CCOS was less than that of PSO.
Surprisingly, the CCOS algorithm generated significantly better

solution quality than both of the CCDE and CCPSO algorithms (see
the convergence curves in Figure 3).

We plotted the details of the components and/or optimizers
selected by the CCOS, CCDE and CCPSO algorithms in the evolu-
tionary process in Figure 3. We observed that the non-separable
component (c2) contributed more to the fitness improvement, as
cy was selected first to be optimized by all the algorithms. Further,
DE was more efficient when solving the non-separable component
¢z, while PSO was more efficient to solve the separable component
¢1. This can be inferred from the selection details of CCOS: DE was
selected more often to solve cz, while only PSO was used to solve
c1. The CCPSO used all the cycles to optimize c,. However it was
not efficient to solve cz, as indicated by the slow convergence rate.
The CCOS algorithm converged equally fast as CCDE in the first
80 cycles when optimizing c;. However after the first 100 cycles,
CCOS converged much faster than CCDE when PSO was used to
solve c1.

5.3 Comparison with CCDE and CCPSO

The box plots of the best fitness values generated by the CCOS,
CCDE and CCPSO algorithms when used to solve the CEC’2010
benchmark problems based on 25 independent runs were presented
in Figure 4. The results showed that the CCOS algorithm consis-
tently generated statistically significantly better solution quality
than at least one of the CCDE and CCPSO algorithms. The num-
ber of “win/tie/loss” of CCOS when compared against CCDE and
CCPSO based on the Wilcoxon rank-sum test (significance level
a = 0.05) was 14/2/4 and 12/5/3 respectively. Significantly, the
CCOS algorithm achieved statistically significantly better solution
quality than both the CCDE and CCPSO algorithms on 7 out of 20
benchmark problems. The results implied that CCOS could poten-
tially select a well-performed optimizer for solving each component.

1083

GECCO ’18, July 15-19, 2018, Kyoto, Japan

Yuan Sun, Michael Kirley, and Xiaodong Li

1017
1010
By s,
=
103
107
—+— CCPSO —«— CCDE —+— CCOs g
107!
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
2
Q
LI* .SaNSDE «SL-PSO
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
2
Q
Lk . saNsDE
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
2
Q
L ispso
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Figure 3: The convergence curves (top figure) and the details of the components and/or optimizers selected by the CCOS
(second figure), CCDE (third figure) and CCPSO (bottom figure) in each evolutionary cycle when used to solve the problem fz.
The horizontal axis () represents the number of the evolutionary cycles. In the top figure, the vertical axis y represents the
fitness value of the median best solution found by each algorithm from 25 independent runs. In the remaining figures, the

vertical axis c represents the index of the components.

5.4 Comparison with State-of-the-arts

The optimization results of the CCOS, CSO, MOS and MA-SW-
Chain algorithms when used to solve the CEC’2010 benchmark
problems were presented in Table 1. The CCOS algorithm achieved
statistically equal or significantly better solution quality than CSO
in 16 out of 20 benchmark problems based on the Wilcoxon rank-
sum test (significance level @ = 0.05). On the fully separable (f to
f3) and fully non-separable (fi9 and f29) benchmark problems, the
CCOS algorithm was outperformed by MOS and MA-SW-Chain.
It was noteworthy that the CCOS algorithm (with RDG as the
decomposition method) did not perform any actual decomposition
for these problems. However on the partially separable problems
(fa to fis), the CCOS algorithm generally produced comparable or
statistically significantly better solution quality than MOS and MA-
SW-Chain. The experimental results confirmed the effectiveness of
CC as a divide-and-conquer approach.

1084

6 CONCLUSION

In this paper, we have investigated how the use of alternative op-
timizers at different evolutionary stages impacted on the solution
quality generated by the CC when used to solve LSGO problems.
Instead of employing only one optimizer to solve all the compo-
nents, we proposed an online optimizer selection framework to
select the best optimizer from a portfolio for each component. At
each evolutionary cycle, the component and optimizer pair that
previously contributed the most to the overall fitness improvement
was selected for evolving. We experimentally demonstrated that
the proposed CCOS algorithm was successful in selecting the best
optimizer when solving the CEC’2010 benchmark problems. Signifi-
cantly, CCOS could potentially generate statistically better solution
quality than the default CC algorithm with no optimizer selec-
tion ability. When compared against several other state-of-the-art
algorithms, CCOS also achieved competitive results.

Cooperative Co-evolution with Online Optimizer Selection

GECCO 18, July 15-19, 2018, Kyoto, Japan

10
10 * * * * *
é 103-6 ; 1012 108-3
_ % 10!
6 1034
10 Lol * 108 *
E %
I 1032 % % é %
10-22 * * 0 " =S 107-5
10
CCOS CCDE CCPSO CCOS CCDE CCPSO ccos ccpE ccpso 0 CCOS CCDE CCPSO CCOS CCDE CCPSO
f f2 13 fa f5
107 10
5 * 10 * * 107-5 *
10 — T *
; l % 10%-6
*
103 1076 1074 107 %
* = % % 103+4
-
100 - B 1065 *
10-19 10718
CCOS CCDE CCPSO CCOS CCDE CCPSO CCOS CCDE CCPSO CCOS CCDE CCPSO CCOS CCDE CCPSO
fo fr f3 fo fio
10? * 10 * * 108 * *
— - 100 - *
10%-8
) *
1076 10
104 %
103A7 %
s % %
- — = *
10714 10°
CCOS CCDE CCPSO CCOS CCDE CCPSO CCOS CCDE CCPSO CCOS CCDE CCPSO CCOS CCDE CCPSO
S fiz fi3 fia fis
4
102 * 10 * * *
f— = 103.5 106.5 % 106
*
1076 ;
103
4
103 é % 10
10° é % = -
— — * * *
10714
CCOS CCDE CCPSO CCOS CCDE CCPSO CCOS CCDE CCPSO CCOS CCDE CCPSO CCOS CCDE CCPSO
fie fir fis fio f20

Figure 4: The box plots of the best fitness values generated by CCOS, CCDE and CCPSO when used to solve the CEC’2010
benchmark problems based on 25 independent runs. The notation "x" above/under the box plot represents CCOS performed
statistically better/worse than the corresponding algorithm based on the Wilcoxon rank-sum test (significance level a = 0.05).
No "x" means CCOS performed equally well with the corresponding algorithm.

REFERENCES

[1] Christian Blum and Andrea Roli. 2003. Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison. ACM Computing Surveys (CSUR) 35,

3 (2003), 268-308. (8]

[2] Janez Brest and Mirjam Sepesy Maucec. 2011. Self-adaptive differential evolution
algorithm using population size reduction and three strategies. Soft Computing
15, 11 (2011), 2157-2174.

[3] Wenxiang Chen, Thomas Weise, Zhenyu Yang, and Ke Tang. 2010. Large-scale
global optimization using cooperative coevolution with variable interaction
learning. In Parallel Problem Solving from Nature, PPSN XI. Springer, 300-309.

[4] Ran Cheng and Yaochu Jin. 2015. A competitive swarm optimizer for large scale
optimization. Cybernetics, IEEE Transactions on 45, 2 (2015), 191-204.

[5] Ran Cheng and Yaochu Jin. 2015. A social learning particle swarm optimization
algorithm for scalable optimization. Information Sciences 291 (2015), 43-60.

[6] Weishan Dong, Tianshi Chen, Peter Tino, and Xin Yao. 2013. Scaling up estimation
of distribution algorithms for continuous optimization. Evolutionary Computation,
IEEE Transactions on 17, 6 (2013), 797-822.

[7] ChiKeong Goh and Kay Chen Tan. 2009. A competitive-cooperative coevolution-
ary paradigm for dynamic multiobjective optimization. Evolutionary Computation,
IEEE Transactions on 13, 1 (2009), 103-127.

Xiao-Min Hu, Fei-Long He, Wei-Neng Chen, and Jun Zhang. 2017. Cooperation

coevolution with fast interdependency identification for large scale optimization.

Information Sciences 381 (2017), 142-160.

[9] Frank Hutter, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. 2014. Algorithm
runtime prediction: Methods & evaluation. Artificial Intelligence 206 (2014),
79-111.

[10] Ata Kaban, Jakramate Bootkrajang, and Robert John Durrant. 2015. Toward
large-scale continuous EDA: A random matrix theory perspective. Evolutionary
computation (2015).

[11] Antonio LaTorre, Santiago Muelas, and José-Maria Pefia. 2011. A MOS-based
dynamic memetic differential evolution algorithm for continuous optimization: a
scalability test. Soft Computing 15, 11 (2011), 2187-2199.

[12] Anany Levitin and Soumen Mukherjee. 2011. Introduction to the design & analysis
of algorithms. Vol. 3. Pearson Education.

1085

GECCO ’18, July 15-19, 2018, Kyoto, Japan

Table 1: The optimization results of the CCOS, CSO, MOS and
MA-SW-Chain algorithms when used to solve the CEC’2010
benchmark problems. The notation “1/||/]” (or “w/t/1”) rep-
resents that CCOS generated statistically “better/equally
well/worse” solution quality than the other algorithm.

Func Stats CCOS CSO MOS MA-SW-Chain
median 2.36e-13 4.40e-12|| 0.00e+00] 2.67e-14]
fi mean 5.76e-02 4.50e-12 1.50e-28 3.80e-14
std 2.04e-01 5.94e-13 5.55e-28 4.91e-14
median 2.52e+03 7.33e+03T 0.00e+00] 8.47e+02]
f2 mean 2.56e+03 7.42e+03 0.00e+00 8.40e+02
std 2.87e+02 2.86e+02 0.00e+00 4.88e+01
median 1.69e+00 2.53e-09] 0.00e+00] 5.16e-13]
f3 mean 1.69e+00 2.60e-09 0.00e+00 5.76e-13
std 1.94e-01 2.62e-10 0.00e+00 2.73e-13
median 1.96e+10 7.26e+11T 4.94e+117T 3.10e+117
fa mean 1.95e+10 7.25e+11 5.16e+11 2.97e+11
std 2.23e+09 1.23e+11 1.85e+11 6.19e+10
median 4.48e+07 2.00e+06] 5.00e+08T 2.30e+08T
f5 mean 4.85e+07 2.86e+06 4.93e+08 2.18e+08
std 1.03e+07 1.79e+06 6.93e+07 5.75e+07
median 1.29e+00 8.23e-07| 1.97e+07T 2.45e+007
fo mean 1.28e+00 8.21e-07 1.97e+07 1.42e+05
std 1.23e-01 2.68e-08 1.15e+05 3.96e+05
median 3.94e-13 2.04e+04T 2.27¢+07T 7.94e-037
f mean 9.15e-12 2.01e+04 3.54e+07 1.17e+02
std 2.61e-11 3.86e+03 3.22e+07 2.37e+02
median 3.47e-09 3.87e+077 2.14e+06T 2.76e+06T
f3 mean 3.19e+05 3.87e+07 3.75e+06 6.90e+06
std 1.10e+06 6.81e+04 4.40e+06 1.90e+07
median 6.73e+06 7.05e+07T 1.18e+07T 1.48e+077
fo mean 6.79e+06 7.03e+07 1.13e+07 1.49e+07
std 9.97e+05 5.73e+06 1.61e+06 1.61e+06
median 2.39e+03 9.59e+03T 6.35e+03T 2.02e+03||
fio mean 2.62e+03 9.60e+03 6.28e+03 2.0le+03
std 7.17e+02 7.67e+01 3.12e+02 1.59e+02
median 2.17e-13 3.80e-08|| 2.84e+01T 3.77e+017
fit mean 1.61e-01 4.02e-08 3.08¢+01 3.86e+01
std 4.68e-01 5.12e-09 6.07e+00 8.06e+00
median 5.41e+00 4.23e+05T 3.46e+03T 3.09e-06]
fiz mean 8.03e+01 4.37e+05 4.39e+03 3.24e-06
std 3.72e+02 6.22e+04 2.92e+03 5.78e-07
median 3.85e+02 5.47e+027 3.19e+02|| 8.61e+02T
fis mean 4.10e+02 6.29e+02 3.32e+02 9.83e+02
std 1.09e+02 2.32e+02 1.19e+02 5.66e+02
median 4.47e+07 2.52e+08T 2.04e+07] 3.83e+07||
fia mean 4.45e+07 2.49e¢+08 2.05e+07 3.85e+07
std 3.32e+06 1.53e+07 3.60e+06 3.86e+06
median 4.52e+03 1.01e+04T 1.29e+04T 2.67e+03]
fis mean 4.56e+03 1.0le+04 1.29e+04 2.68e+03
std 1.68e+02 5.23e+01 3.48e+02 9.95e+01
median 1.49e-13 5.75e-08|| 3.97e+02T 9.32e+017
fie mean 1.88e-01 5.8%-08 3.96e+02 9.95e+01
std 5.53e-01 5.61e-09 3.47e+00 1.53e+01
median 4.22e+03 2.22e+06T 7.30e+03T 1.28e+00]
fi7 mean 4.28¢+03 2.20e+06 8.45e+03 1.27e+00
std 1.22e+03 1.55e+05 5.04e+03 1.24e-01
median 1.13e+03 1.76e+03T 7.78e+02] 1.41e+037
fis mean 1.15e+03 1.73¢+03 8.96e+02 1.57e+03
std 1.66e+02 5.22e+02 4.03e+02 6.73e+02
median 9.32e+05 1.00e+077T 5.71e+05] 3.75e+05]
fio mean 9.47e+05 1.01e+07 5.49e+05 3.80e+05
std 7.61e+04 5.64e+05 8.38e+04 2.34e+04
median 2.43e+03 9.85e+02] 7.40e+01] 1.04e+03]
f20 mean 2.48¢+03 1.05e+03 9.23e+01 1.06e+03
std 2.41e+02 1.49e+02 8.99e+01 9.38e+01
Sum w/t/l - 13/3/4 12/1/7 10/2/8

1086

(13]

(14]

[15

=
&

(17

[18

[19]

[20

[21

[22

[23

[24]

[26

[27

[28

&~
20,

(30]

[31

[32

(33]

[34

[35

Yuan Sun, Michael Kirley, and Xiaodong Li

Ke Li, Alvaro Fialho, Sam Kwong, and Qingfu Zhang. 2014. Adaptive operator
selection with bandits for a multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on Evolutionary Computation 18, 1 (2014),
114-130.

Yi Mei, Xiaodong Li, and Xin Yao. 2014. Cooperative coevolution with route
distance grouping for large-scale capacitated arc routing problems. Evolutionary
Computation, IEEE Transactions on 18, 3 (2014), 435-449.

Yi Mei, Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. 2016. A com-
petitive divide-and-conquer algorithm for unconstrained large-scale black-box
optimization. ACM Trans. Math. Software 42, 2 (2016), 13.

Daniel Molina, Manuel Lozano, and Francisco Herrera. 2010. MA-SW-Chains:
Memetic algorithm based on local search chains for large scale continuous global
optimization. In Evolutionary Computation (CEC), 2010 IEEE Congress on. IEEE,
1-8.

Mario A Muiioz, Yuan Sun, Michael Kirley, and Saman K Halgamuge. 2015.
Algorithm selection for black-box continuous optimization problems: A survey
on methods and challenges. Information Sciences 317 (2015), 224-245.
Mohammad Nabi Omidvar, Xiaodong Li, Yi Mei, and Xin Yao. 2014. Cooperative
co-evolution with differential grouping for large scale optimization. Evolutionary
Computation, IEEE Transactions on 18, 3 (2014), 378-393.

Mohammad Nabi Omidvar, Xiaodong Li, and Ke Tang. 2015. Designing bench-
mark problems for large-scale continuous optimization. Information Sciences 316
(2015), 419-436.

Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. 2011. Smart use of compu-
tational resources based on contribution for cooperative co-evolutionary algo-
rithms. In Proceedings of the 13th annual conference on Genetic and evolutionary
computation. ACM, 1115-1122.

Mohammad Nabi Omidvar, Ming Yang, Yi Mei, Xiaodong Li, and Xin Yao. 2017.
DG2: A faster and more accurate differential grouping for large-scale black-
box optimization. IEEE Transactions on Evolutionary Computation 21, 6 (2017),
929-942.

Mitchell A Potter and Kenneth A De Jong. 1994. A cooperative coevolutionary
approach to function optimization. In Parallel problem solving from nature PPSN
III. Springer, 249-257.

Eman Sayed, Daryl Essam, Ruhul Sarker, and Saber Elsayed. 2015. Decomposition-
based evolutionary algorithm for large scale constrained problems. Information
Sciences 316 (2015), 457-486.

David J Sheskin. 2003. Handbook of parametric and nonparametric statistical
procedures. CRC Press.

Yuan Sun, Michael Kirley, and Saman Kumara Halgamuge. 2015. Extended
differential grouping for large scale global optimization with direct and indirect
variable interactions. In Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation. ACM, 313-320.

Yuan Sun, Michael Kirley, and Saman Kumara Halgamuge. 2017. A recursive
decomposition method for large scale optimization. IEEE Transactions on Evolu-
tionary Computation (2017). https://doi.org/10.1109/TEVC.2017.2778089

Yuan Sun, Michael Kirley, and Saman K Halgamuge. 2017. A memetic cooperative
co-evolution model for large scale continuous optimization. In Australasian
Conference on Artificial Life and Computational Intelligence. Springer, 291-300.
Ke Tang, X Yao, and Pn Suganthan. 2010. Benchmark functions for the CEC’2010
special session and competition on large scale global optimization. Technique
Report, USTC, Natrue Inspired Computation and Applications Laboratory 1 (2010),
1-23.

LinYu Tseng and Chun Chen. 2008. Multiple trajectory search for large scale
global optimization. In Evolutionary Computation, 2008. CEC 2008.(IEEE World
Congress on Computational Intelligence). IEEE Congress on. IEEE, 3052-3059.
Hui Wang, Zhijian Wu, and Shahryar Rahnamayan. 2011. Enhanced opposition-
based differential evolution for solving high-dimensional continuous optimization
problems. Soft Computing 15, 11 (2011), 2127-2140.

Thomas Weise, Raymond Chiong, and Ke Tang. 2012. Evolutionary optimization:
Pitfalls and booby traps. Journal of Computer Science and Technology 27, 5 (2012),
907-936.

Ming Yang, Mohammad Nabi Omidvar, Changhe Li, Xiaodong Li, Zhihua Cai,
Borhan Kazimipour, and Xin Yao. 2017. Efficient resource allocation in coop-
erative co-evolution for large-scale global optimization. IEEE Transactions on
Evolutionary Computation 21, 4 (2017), 493-505.

Zhenyu Yang, Ke Tang, and Xin Yao. 2008. Large scale evolutionary optimization
using cooperative coevolution. Information Sciences 178, 15 (2008), 2985-2999.
Zhenyu Yang, Ke Tang, and Xin Yao. 2008. Self-adaptive differential evolution
with neighborhood search. In Evolutionary Computation, 2008. CEC 2008.(IEEE
World Congress on Computational Intelligence). IEEE Congress on. IEEE, 1110-1116.
Aimin Zhou and Qingfu Zhang. 2016. Are all the subproblems equally impor-
tant? Resource allocation in decomposition-based multiobjective evolutionary
algorithms. IEEE Transactions on Evolutionary Computation 20, 1 (2016), 52-64.

https://doi.org/10.1109/TEVC.2017.2778089

	Abstract
	1 Introduction
	2 Related Work
	2.1 Cooperative Co-evolution
	2.2 Techniques Other Than Cooperative Co-evolution

	3 Cooperative Co-evolution with Component Optimizer Selection
	4 Experimental Methodology
	5 Experimental Results
	5.1 Selection Details of CCOS
	5.2 Selection Ability of CCOS
	5.3 Comparison with CCDE and CCPSO
	5.4 Comparison with State-of-the-arts

	6 Conclusion
	References

